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1 Introduction

1.1 Purpose and Scope

Formal methods are mathematically-based techniques to support the development of software intensive
systems [23][22]. Normally, formal methods oriented to design and verification of systems include (i) a
modelling language, which is used to model a system, and (ii) a verification strategy, which is used to verify
properties on the system. Formal methods are usually associated to formal tools, which can provide textual or
visual editors to create a model of the system, as well as automated verification capabilities. Formal methods
have been largely applied in industrial projects, especially in the safety-critical market, including railways [24].
However, it cannot yet be said that a single mature technology has emerged.

The Work Package 4 (WP4) of the ASTRail project aims to identify, based on an analysis of the state-of-the-
art and on concrete trials, the candidate set of formal and semi-formal methods that appear as the most
adequate to be used in the railway context. In the following, when we will use the general term “formal method”,
we will implicitly include also semi-formal methods, i.e. those methods that use languages for which the
semantics is not formally defined but depends on their execution engine.

Since formal methods are normally associated with tools, we will also use the terms formal methods and formal
tools interchangeably.

To address the goal of identifying the most adequate formal methods, WP4 is structured into four tasks (T4.4,
in bold, is the focus on the current deliverable):

e Task 4.1 - Benchmarking: this task aims at studying the state-of-the-art and state of the practice of
formal and semi-formal methods, by gathering knowledge from the literature and railway practitioners.

e Task 4.2 - Ranking: this task aims at providing a ranking matrix to support the selection of the most
adequate formal methods to be used in a certain development context.

e Task 4.3 - Trial Application: this task aims at experimenting the usage of a set of selected formal
methods through the modelling of the moving-block system, from Task 2.1.

e Task 4.4 - Validation: this task aims at validating the usage of the selected formal methods by
integrating the moving-block model with the automated driving technologies from Task 3.3.

The current deliverable D4.3 Validation Report is the output of Task 4.4 — Validation. The results of Task 4.1-
2 and 4.3 have been reported in D4.1 [RD.1] and D4.2 [RD.5] respectively.

1.2  Executive Summary

The description of Task 4.4 - Validation Report is as follows:

In order to validate the choices and techniques consolidated in task T4.3 we will address, in
collaboration with the other partners of the project, the modelling of the integration of Moving Block
with Automated Driving Technologies (from T.3.3), providing for each considered item a full model that
will represent a rigorous and verifiable definition of functional, interoperability and dependability
requirements.

In Task 4.3 a series of formal techniques were evaluated and a main output of the task was that a combination
of techniques is required to address different needs and phases of the railway process. Combinations of
techniques should be chosen based on the context. Therefore, validating choices and techniques, as
discussed in the proposal, implies defining and assessing a formal development process that is appropriate
for the current context of development. Hence, this deliverable is concerned with the validation of a proposed
formal process, by means of modelling and verification, applied to Moving Block with Automated Driving
Technologies.

In the context of the ASTRail project, both Moving Block and Automated Driving Technologies (referred in the
following as Automated Train Operation or ATO) can be considered as being at the concept phase of
development. Indeed, preliminary requirements were defined for the Moving Block (see [RD.5]), and only high-
level functions were defined for the ATO in Task 3.3 (see [RD.4]).
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For the concept phase of the development, in which requirements need to be elicited and consolidated, the
proposed process supported by formal methods foresees the following phases:

e Requirements Elicitation and Simulation: for which Simulink-Stateflow was selected as appropriate
tool to provide a rigorous, complete modelling of the integration of the Moving Block with ATO, and to
produce a requirements specification for the integrated system;

e Mapping to Formal Languages: for which UML was chosen as intermediate language towards a
formalisation into Event-B;

e Formal Verification: for which ProB was chosen as formal tool to verify the requirements against the
Event B model.

The proposed process was applied to the modelling and verification of the Moving Block with ATO. First, two
separate Simulink-Stateflow models were developed for the Moving Block and the ATO, based on a set of
preliminary requirements. The requirements were then extended and consolidated based on the simulation,
an integrated model was developed and a final integrated requirements specification was produced. The
models are reported at [25]. Instead, the requirements are reported in the Annex A — System Requirements.

The model and the requirements were used as input to define a UML model oriented to have a clear,
established specification that could be used as a reference for translation into formal languages. The UML
model was translated into EventB, the formal input language of ProB. The graphical UML model is reported in
this deliverable, while the ProB model is available at [25].

Given the EventB model that integrates Moving Block and ATO, formal verification activities were carried out
with the ProB tool. Specifically, part of the requirements reported in the Annex A — System Requirements were
mapped to Linear Temporal Logic (LTL) formulae, and model checking was performed with ProB.

The implementation of the process and its application to the Moving Block with ATO has showcased strong
points and weaknesses of the applied strategy. Specifically, the main strengths are:

1. Modelling and simulating with Simulink-Stateflow enables the identification of incomplete, inconsistent,
or too generic requirements, as it forces the modeller to take implementation choices, and allows the
user to observe the behaviour of the system and interact with it.

2. Graphical models are easy to understand by domain experts, and reading Simulink-Stateflow models
required limited guidance, therefore making the language suitable for interaction between formal
methods experts and railway domain experts.

3. The UML modelling activity enables the abstraction from concrete choices required by the Simulink-
Stateflow platform, and, in particular, allows the modeller to observe nondeterministic behaviour.

4. The translation of the UML model into Event B enables the further activities of formal verification, but
allows also the modeller to identify mistakes in the design.

5. The translation of the requirements into temporal logic formulas to be verified again allows the
identification of mistakes in the model or in the requirements.

6. The formal verification activity can be performed with acceptable, though not negligible, time for most
of the requirements.

Instead, observed weaknesses to consider are:

1. The modelling and translation processes are time consuming with respect to defining a requirements
document in natural language.

2. The produced models, although consolidated and revised multiple times throughout the process, are
not guaranteed to be stable, as new requirements may emerge during further refinements.

3. The formal methods experts must make choices both in the modelling phase and in the translation
activities. These choices, concerning for example the decision of modelling subsets of the system to
enable formal verification, require the expertise in formal methods and cannot be automatically
performed with the selected tools.

4. Depending on their nature, part of the requirements could be not formally verified, and require other
means to assess them.

5. The whole proposed process is not entirely supported by tools. In particular, the translation activities
are performed manually.
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Given these observations, the proposed formal process cannot be considered as a fully automated technique.
However, the different steps involved, the different languages used, and the different degree of formality of the
different steps enabled the possibility of producing a set of consolidated requirements for the integrated
Moving-block and ATO system as well as verifiable specifications of the requirements in the form of formal and
semi-formal models.

The remainder of the deliverable is structured as follows:

1.

In Section 2 we present the overview of how the formal methods choices have been validated within
ASTRail;

In Section 3 we present the activity of modelling and simulating with Simulink-Stateflow;

In Section 4 we present the activities of translation into formal models, through UML and Event B, and
formal verification with ProB;

In Section 5, we report conclusion and final remarks.

1.3 Related documents
Title Reference Version Date
[RD.1] D4.1 Report on Analysis and Ranking of Formal methods D41 4.2 17/01/2019
[RD.2] D2.1 Modelling of the moving block signalling system D21 2.0 28/01/2019
[RD.3] D2.2 Moving Block signalling system Hazard Analysis D2.2 2.0 28/01/2019
D3.2 Automatic Train Operations: implementation,
[RD.4] operation characteristics and technologies for the Railway D3.2 1.2 28/01/2019
field
[RD.5] D4.2 Preliminary Trial Report D4.2 1.1 27/11/2018
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2 Validation of the Process

This section describes the methodology followed to validate the proposed process to select and adopt formal
methods in the railway context. Specifically, we first explain how we selected a subset of the available formal
methods, and how we have used them for different purposes, namely requirements elicitation and simulation,
and formal verification.

It is worth highlighting that the process outlined is applied in the concept phase of the development process,
in which early requirements are defined and preliminarily validated. It is outside the scope of this deliverable
to present a full formal process from early requirements to implementation. Our goal is instead to highlight how
the features of diverse tools can be exploited for different purposes.

2.1 Formal methods selection

In this section we present how we have leveraged the information from the previous deliverables, namely D4.1
and D4.2, to select the appropriate formal methods to use in our context. Specifically, we justify why we have
chosen Simulink-Stateflow for requirements elicitation and consolidation, and why we have selected UML as
intermediate representation and ProB for formal verification. In the following, we first outline the most relevant
information from previous deliverables, and then we motivate our choices.

2.1.1  Main Output from Previous Deliverables

In this section, we list the main output from the previous deliverable that we considered to support the selection
of formal methods for our specific context.

In D4.1, we performed a literature survey on formal methods applications to railway problems, complemented
with a review of projects, a questionnaire with practitioners and a preliminary tool evaluation. One of the main
output from D4.1, also published in [20] and [21], is the dominance of the B method and associated
supporting tools (Rodin environment, Atelier B, ProB) in the railway context.

In D4.2, we performed a tool trial, by modelling a preliminary specification of the moving-block system with
fourteen formal tools, selected based on the survey from D4.1. Furthermore, we performed a usability test for
the eight selected tools. Despite the dominance of the B method in literature and practice, D4.2 has shown
that each method and associated tool is appropriate for different development contexts. Specifically, one
of the main conclusions from D4.2 was as follows:

e Simulink and SCADE are appropriate for both early prototyping and detailed design towards code
generation, other tools need to be used when aiming at formal verification.

e UMC is appropriate for initial prototyping, when one wants to adopt a design based on UML state
machines to facilitate communication with different stakeholders, but wants also verification
capabilities as the ones provided by UMC.

e Uppaal is appropriate when one needs to focus on the verification quantitative, real-time properties
and probabilistic aspects.

e NuSMV and SPIN are appropriate when the system, or composition of systems, has a large state
space, and one needs to verify temporal logic properties.

e Atelier B and ProB are the right choice for top-down development (i.e., from initial design to code) of
single systems, and have somewhat complementary verification capabilities, with Atelier B supporting
invariants checking, and ProB supporting model checking.

Other tools, although not widely used in railways, such as CADP and FDR4, have been also experimented in
the context of the project and demonstrated their appropriateness for the modelling and verification in the
context of large scale, systems of systems.

Finally, another output from D4.2, concerning usability of formal tools, as evaluated by railway practitioners
in the context of the project, is that tools that offer graphical simulation capabilities such as Simulink, SCADE,
ProB and Uppaal are considered more usable, and easy to understand by practitioners.

2.1.2  Choice of Formal Methods based on the Development Context

As mentioned, the current context is the concept phase of the development. In this phase, requirements for
the moving-block system and the ATO need to be (1) elicited from stakeholders and documentation, (2)
preliminary assessed with formal verification.
Deliverable nr. | D4.3
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Therefore, we have chosen Simulink (and its package for state machines modelling, named Stateflow) as a
means to support the requirements elicitation task of this phase. Although also SCADE would have been an
appropriate choice according to the conclusions reported above, we selected Simulink since, from our tool
usability evaluation presented in D4.2, the tool was considered the most usable by the participants (System
Usability (SUS) Score: 76 over 100). Since in the early phase of elicitation it is crucial that all the involved
stakeholders, namely formal methods experts and railway experts, understand the language used for
modelling, Simulink was considered as a suitable choice for our project.

Concerning formal verification of the requirements, i.e., verification of qualitative properties related to
conditions and expected actions, we have selected ProB as the main tool given (a) the dominance of this tool
in the railway context, as outlined by D4.1, and (b) it evaluation in terms of usability as shown in D4.2 (SUS
Score: 62 over 100, ranked third in terms of usability right after Simulink and SCADE).

2.2  Formal Methods Application Process

In this section we provide an overview of the application of the formal process, based on the selected formal
methods and tools. The output of the process in terms of models is further detailed in Sect. 3 and 4.

Figure 1 outlines the adopted formal process. The starting point of the process is a set of input documents
about the systems to be developed (External Documents). Specifically, in our context, we leveraged the
preliminary requirements of the moving-block system developed in D4.2, and the requirements for the ATO
system available from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS GoA2 Specification [26].
These documents were used as a source to draft the first early requirements for the moving-block and ATO
systems (Requirements Drafting). The produced requirements, expressed in natural language and
complemented with informal models, were then represented and simulated by means of Simulink-Stateflow
(Semi-formal Modelling and Simulation with Simulink-Stateflow). This activity allowed to further elicit,
refine and improve the drafted requirements towards a stable requirements document.

The produced Simulink-Stateflow model together with the produced requirements were used as a starting point
for formal verification. To enable verification, the requirements expressed through the model were first
represented into an intermediate format, namely UML Statecharts (Semi-formal Modelling with UML
Statecharts). The goal was to have an intermediate model expressed in a format from which different,
comparable formal models could be potentially derived. We have chosen to use UML Statecharts as UML is
the most common language for representation of systems in railways, as shown by the results in D4.1. From
the UML Statecharts model, a formal ProB model was derived (Formal Modelling with ProB). Qualitative
formal verification was then performed on this model, based on the requirements defined earlier. The
verification allows to assess the requirements and possibly improve them (Formal Verification with ProB).
The UML model can also be used as a starting point to derive other models, and practice formal methods
diversity, by comparing the results obtained with other tools.
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Figure 1 Overview of the adopted formal process

2.2.1  Requirements Elicitation and Simulation

In this section we outline the process followed to provide the models for the moving-block and the ATO, and
to define the final set of requirements for the two components, including systems integration elements.

Moving-block: the moving-block requirements were preliminarily defined as part of D4.2. During the current
task of ASTRall, the preliminary requirements were further refined and simulated by means of Simulink-
Stateflow. Specifically, representative formal methods experts from CNR developed the Simulink-Stateflow
model based on the requirements reported in D4.2. Whenever a requirement was considered inconsistent,
incomplete, or unclear, based on the modelling and simulation activities, reported back the problem to the
railway domain experts from SIRTI. The interaction was aided by the graphical models presented to the experts
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from SIRTI, who took care of updating and modifying the original requirements, based on the reported
problems. At the end of these iterations, a novel requirements document was produced for the moving-block
system. The document is reported in Annex A — System Requirements — Part 1, Moving Block.

ATO: the initial ATO requirements come from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS GoA2
Specification [26]. Differently from the moving-block requirements, these are very detailed, and a complete
model of them was considered out of the scope of the current project. Therefore, in this case, the railway
experts from SIRTI selected a subset of the requirements that could be suitable to produce a model to be
integrated with the moving-block model. These initial requirements were modelled, simulated and refined with
the same approach used for the moving-block system, i.e., by means of multiple iterations and discussion
between CNR and SIRTI. The document is reported in Annex A — System Requirements — Part 2, ATO.

Integrated System: following the definition of the requirements for moving-block and ATO, an integrated
Simulink-Stateflow model was produced by CNR. This model was used as a baseline to define the final
requirements concerning the interaction between ATO and moving-block. These final requirements, developed
by SIRTI, are reported in Annex A — System Requirements — Part 3, Integrated System.

2.2.2  Mapping to Formal Languages

In this section we outline how the original model and requirements for the Integrated System were mapped
into the ProB input language, named ProB, to enable verification. This activity involved modellers from CNR
and representative of SIRTI, to adjust the requirements previously produced.

For the mapping towards EventB, a first modelling by means of the UML language was performed by CNR.
This modelling activity took into account the requirements produced, and reported in Annex A — System
Requirements, together with the integrated Simulink model (Annex A — System Requirements — Part 3,
Integrated System). The modelling abstracted away from quantitative aspects that were not relevant for the
foreseen type of formal verification. After the UML representation, an EventB model was defined as a faithful
mapping of the UML model, to enable formal verification. The mapping activity, together with the UML model
and EventB model, is reported in Section 4 together with the formal verification activity introduced in the next
section.

It is worth mentioning that the model produced in UML, and translated into EventB, is not a faithful translation
of the original Simulink-Stateflow model. Indeed, the goal of this model is to enable the analysis of relevant
requirements aspects, and not to verify the original Simulink-Stateflow design, which was oriented towards the
elicitation of the requirements. This opportunistic and non-systematic approach to modelling and verification is
considered appropriate for this concept phase, to clarify whether the elicited the requirements are reasonable.

2.2.3 Formal Verification

In this section we outline the process followed verify the components from a quantitative and qualitative point
of view. This verification activity was oriented to showcase the process, to demonstrate that the system
specification produced, i.e., the requirements and the Simulink-Stateflow model, is verifiable, as originally
planned in the DoW. The formal verification was performed by means of the ProB tool. To this end, part of the
requirements reported in Annex A — System Requirements were considered and translated into linear temporal
logic (LTL) formulas. The translation process, results and comments are reported in Section 4.3.
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3 Moving Block and ATO modelling

In this section we provide a description of the moving block and ATO Simulink models developed, based on
the process described in Sect.2.2.1. We first describe some basic principles of the Simulink and Stateflow
languages, which are useful to understand the rest of the section. Then, we present each model individually,
and we describe the final, integrated model, pinpointing the adjustments needed to complete the integration.
At the end of the section, we discuss observations throughout the process of requirements elicitation and
simulation.

3.1 Simulink and Stateflow Languages

Simulink is a commercial model based development tool, distributed by Mathworks, that allows the user to
graphically draw diagrams of the system modelled in the form of input-output blocks. The blocks can be further
refined in the form of hierarchical state machines through the tool Stateflow, included in Simulink. Simulink
comes with several packages, also for code generation from the models. For the current models, we used
Simulink 2017b. Below, we present some basic concepts about the Simulink and Stateflow languages, useful
to interpret the models presented in the following sections. For more details, we refer to the extensive Simulink
documentation [2]
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Figure 2 Simulink and Stateflow basic concepts

Simulink Blocks: a sample Simulink diagram is represented in Figure 2 (top). The basic elements of
Simulink are the blocks, which are components that take some input and produce some output. Each
component in Simulink, including elements with several input and output variables, is considered a
block. Blocks can communicate with direct links, or through labels. Labels with the same name are
associated to the same variables or messages exchanged between blocks. In the Simulink diagrams
that we will consider in this deliverable, the main blocks are sub-systems blocks, i.e., complex blocks
with several input and output variables. To observe the status of the different variables during the
simulation, one can use specific scope blocks.

Stateflow Statecharts: subsystems can have different forms, and can include several blocks. In our
context, each sub-system is a Stateflow statechart (or Chart, in Stateflow dialect). Figure 2 (bottom)
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represents a sample statechart. The statechart inherits input and output from the associated sub-
system block. Furthermore, it is composed by a set of hierarchical states. The decomposition of states
can be parallel (dashed lines, PARALLEL_1 and PARALLEL _2) or mutually exclusive (solid line, for
example OFF, ON). Parallel states are actually executed in a sequential order, and the order is visually
specified on the chart itself (top-right corner of each parallel state).

e Conditions and Actions: Conditions and actions can be used in the transitions from mutually
exclusive states. Conditions are expressed in squared brackets, and actions are expressed in curly
brackets. Conditions are normally associated to variables. However, they can also refer to the
reception of messages. In this case they do not make use of square brackets.

e Internal Actions: Actions can be defined also within the states. There are three types of actions: entry
actions (en), which are executed only once when the system enters the specific state; during actions
(du), which are executed at each simulation step; exit action (ex), which are executed when the system
exists the state.

e Functions: functions are graphical flowcharts, with conditions and actions analogous to those used
for transitions between states. Functions can be called within actions in states, in transitions, and in
functions themselves. The main difference between a function and a statechart with mutually exclusive
states is that a function is entirely executed within one simulation step, while at each simulation step
only one state in a certain hierarchy can be active in a statechart. This is similar to the difference that
we have between a C function with nested if-then-else statements, and a C function with a switch case
statement. The former is analogous to Stateflow functions. The latter is analogous to Stateflow
statecharts with mutually exclusive states.

3.2  Moving Block
3.2.2  Moving Block Overview

The components of the moving block system considered are depicted in Figure 3. The train carries the Location
Unit (LU) and OBU (On-board Unit) components, while the RBC (Radio-block Centre) is a trackside
component. The LU receives the train’s location from GNSS satellites, sends this location (and the train’s
integrity) to the OBU, which, in turn, sends the location to the RBC. Upon receiving a train’s location, the RBC
sends a Movement Authority (MA) to the OBU (together with speed restrictions and route configurations),
indicating the space the train can safely travel based on the safety distance with preceding trains. The RBC
computes the MA by communicating with neighbouring RBCs and by exploiting its knowledge of the positions
of switches and other trains (head and tail position) by communicating with a Route Management System
(RMS). In our context, we abstract from an RMS and communication among neighbouring RBCs: we consider
one train to communicate with one RBC, based on a seamless handover when the train moves from one RBC
supervision area to an adjacent one, as regulated by its Functional Interface Specification [1]. Next to these
physical components, there are two temporal constraints for the OBU to respect: the location is continuously
updated every 5 seconds, whereas the MA must be continuously updated within 10 seconds. If the OBU does
not receive an MA within 10 seconds from the last MA, the OBU is required to force the train to brake

M@

location location
¢, location /\1 //\
"‘ — movement Radio
X% authority Block

S
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Figure 3 Overview of the Moving-block system
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3.2.2  Moving-block Model Architecture

Figure 4 reports the architecture of the model, which includes four main Simulink blocks representing the
interacting subsystems, namely OBU, LU, RBC, and Train. Each block communicates with the other blocks by
means of input/output messages. For example, the label named location is one of the outputs of the LU, and
it is input to the OBU block. This indicates a virtual channel by which a message is exchanged between LU
and OBU, including the current train location. Similarly, location_to_RBC is one of the outputs of the OBU
block, also serving as input to the RBC block: the OBU location, received from the LU, is passed to the RBC,
which, in turn, can compute the MA and send it to the OBU. The OBU is also in charge of activating the brake,
and the brake’s status can be visualised in the BRAKE_COMMAND scope element. Similarly, other scope
elements are used to visualise a TIMER, indicating the time from the last received MA (2.4 seconds in Figure
4), and SPACE_TO_EOA, which is the space from the current position to the end of the MA (996.4 meters).
Following the requirements, failure inputs (OBU_FAIL, RBC_FAIL, and LU_FAIL) are associated to each
block to simulate external events that may trigger system failures.

In the following sections we describe the behaviour of the different components of the model, namely OBU,
LU, RBC and Train.
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Figure 4 Architecture of the Moving-block Simulink Model
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3.2.3  Behaviour of the Moving-block System: OBU Component

Figure 5 reports a high-level view of the behaviour of the OBU component. The model has two main parallel
states: MESSAGE_QUEUE_MANAGER and OBU_MAIN.

MESSAGE_QUEUE_MANAGER, which appears in all the developed Simulink models, handles the queue of
received messages. Specifically, at each clock cycle the queue is emptied, and only the last message received
is read and processed. The internal part of the state is not reported in the picture, as this parallel state has
solely an ancillary role for the model.

OBU_MAIN represents the main behavioural block of the OBU is composed of a statechart of two states, RUN
and BRAKE. The system passes from the normal state RUN to the BRAKE state whenever the timer set to
receive a movement authority (OBU_out_timer) exceeds 10 seconds, or there is a failure (OBU_fail == 1) or
the train is moving and the current space limit is exceeded, i.e., the MA has been violated. The system can
return to the RUN state only upon reset (OBU_reset == 1).

The RUN state is itself composed of parallel states that handle the different functions of the OBU. Specifically,
four states are considered, and described in the following.

e GENERATE_LOCATION_REQUEST (Figure 6). Every 500 milliseconds (see condition after(500,
ms)) a location request message is sent to the LU.

e SEND_LOCATION_TO_RBC (Figure 7). At every cycle, the sub-state SEND_LOC TO_RBC
controls whether a new location is received from the LU (function check_new_location). Then, every
5 seconds (see condition after(5, sec)) a position report including the current location is sent to the
RBC. This happens only if the location received is not older than 1 second (function
check_location_fresh). In case an alarm is received from the LU, the statechart goes to the state
POSITION_ERROR. From this state, no update is sent to the RBC. As a consequence, no MA will be
received, and the system will eventually brake thanks to the 10 seconds timeout (OBU_out_timer >
10 in Figure 5).

e RECEIVE_MA (Figure 8). If a new MA is received from the RBC (OBU_REC_ MA flg == 1), the
current MA value is updated, and an ACK message is sent to the RBC.

e COMPUTE_BRAKING_CURVE (Figure 9). At every cycle, the space to the end of authority is
computed based on the current MA value (MA_value), the location in which the MA was received
(MA_reference), and the current location (I_current_location). The space to the end of authority is
represented by the variable OBU_out_current_space_limit. This represents a form of braking curve
in the current instant, expressed in terms of space. The actual computation of the braking curve in
terms of speed, and taking into account the train weight and other parameters that depend on the
line, is not considered in the current model, as its main focus is on the interaction between the different
components and not on a faithful implementation of all the details of the control system.

Deliverable nr. | D4.3
Deliverable Title | Validation Report Page 17 of 70
Version | 1.4 -06/12/2019



Validation

%H STR a I'I Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block

e e
“OBU_MAIN 2
'
v
RUN ™\ [OBU_ out_timer > 10 || OBU_fail == 1 || ..
en: OBU_out_timer = 0; MA_value = 0; MA_reference = 0; (OBU_out_current_space_limit <= 0 && OBU_train_stopped == 0)]

|_current_location = 0; |_current_loc_timestamp = 0;

1

I BRAKE

1 en: OBU_out_brake = 1;
A —————— - -| ex: OBU_out_brake = 0;

(RECEVE WA~~~ """ T T T T T T y [0BU_reset ==1]
| 1
! 1
! 1
N e e >
P _

1COMPUTE_BRAKING_CURVE
I
I
\

Figure 5 Behaviour of the OBU component: High-level view

/GENERATE_LOCATION_REQUEST

LocationRequest
[after(500, msec)]...
~. {OBU_SEND_location_request.data = 1;
) send(OBU_SEND_location_request);}

Figure 6 Behaviour of the OBU Component: GENERATE_LOCATION_REQUEST State
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en: check_new_location();
du: check_new_location(); 2

function check_new_|ocation

é [OBU_REC_location_flg == 1]
1

{l_current_location = OBU_REC_location.data;

2 |_current_loc_timestamp =t} O

™
L W,

[after(5, sec) && (check_location_fresh(t, |_current_loc_timestamp) == 1)] ...
{OBU_SEND _location_to RBC.data.current_location = |_current_location;
OBU_SEND_location_to_RBC.data.current_timestamp = t;
send(OBU_SEND_location_to_RBC);}

function o_status = check_location_fresh(i_current_time, i_time_reference)

{o_status = 0;}

[(i_current_time - i_time_reference) >= 1]

1

2
{o_status = 1;} {o_status = 0;}

A\
Figure 7 Behaviour of the OBU Component: SEND_LOCATION_TO_RBC State
rT?ECEIVE_MA
l [OBU_REC_MA_fig == 1]

NEW_MA_RECEIVED {MA_value = OBU_REC_MA data.MA_value;

en: MA_reference = |_current_location;

OBU_out_timer_ref = t; send(OBU_SEND_MA_ACK):;}

du:

OBU_out_timer = t - OBU_out_timer_ref;
\.

Figure 8 Behaviour of the OBU Component: RECEIVE_MA State
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/GOMPUTE_BRAKING_CURVE A

en: OBU_out_current_space_limit = get_current_space_limit(MA_value, MA_reference, |_current_location);
du: OBU_out_current_space_limit = get_current_space_limit(MA_value, MA_reference, |_current_location);

function o_current_space_limit = get current_space_limit(i_MA_value, i_MA_reference, i_current_location)

I {o_current_space_limit =i_MA_value +i_MA_reference - i_current_location;}

&

Figure 9 Behaviour of the OBU Component: COMPUTE_BRAKING_CURVE State

3.2.4 Behaviour of the Moving-block System: LU Component

Figure 10 represents the behaviour of the LU component. Besides the support state
MESSAGE_QUEUE_MANAGER, which handles the message queue, and was already described in Section
3.2.3, we have a main state called LU_MAIN. This is composed of two sub-states: SEND _LOC and LU_FAIL.
The former sends a position report message including the current location of the train, every time a request is
received from the OBU (LU_REC location_reques_flg == 1). Whenever a failure occurs, the LU goes into
the LU_FAIL state, and raises an alarm, which is received by the OBU (out_alarm == 1).

T —————

I.T\TESSAGE_QUEUE_MANAGER 1
I 1
I |
I |
N o o e o e 1
/LU_MAIN 3
| l

SEND_LOC

i en: out_alamm = 0; 1— [LU_REC_location_request_flg == 1 && LU_fail == 0]...

i {LU_SEND_location.data = LU_current_location;

E / send(LU_SEND_location);}

E i [LU_fail == 1] |

! _fail == 1 -

! J {out_alarm = 1;} ‘ RELEN==0]

' U_FAIL

i
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Figure 10 Behaviour of the LU Component

3.2.5  Behaviour of the Moving-block System: RBC Component

Figure 11 represents the main behaviour of the RBC system (here, we do not report the
MESSAGE_QUEUE_MANAGER state, for ease of visualisation). The system has three states, namely:
SEND_MA_TO_OBU, WAIT_ACK and FAIL.

In the state SEND_MA_TO_OBU, whenever a new location is received (RBC_REC location_flg == 1) and
no failure occurred, a message called RBC_SEND_MA to be sent to the OBU is composed. Such message
includes the MA value for the OBU, which is computed by means of the set_current_MA_value function. This
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function, reported at the bottom of the figure, takes into account the current location of the train, the previous
MA value sent, as well as the previous train position (OBU_current_location, previous_MA,
previous_train_pos). If the current location of the train does not appear to violate the old MA, a new MA value
is sent, always equal to 1000 meters, for the sake of simplicity. Instead, if the train appears to have violated
the MA, a message is sent to the OBU including an MA value equal to 0, so that the train is forced to brake.

After sending the message to the OBU, the RBC goes into the WAIT_ACK state. If an ACK is received
(MA_ACK_from_OBU_flg == 1), the RBC goes back to the initial state and waits for another position report
from the OBU. If an ACK message is not received, the RBC remains in the WAIT_ACK state, and sends again
the message after one second from the previous one (see function check_resend_MA). This is repeated for
three times maximum. Then, if no ACK is received from the OBU, the system goes back to the initial state (see
transition |_count_MA_sent >= 3).

REC_MAIN
&n: previous_train_pos = INIT_TRAIN_POSITION_VALUE; previous_MA = 0;
[RBC_REC_location_fig == 1 && RBC_fail == 0]..
{0BU_current_location = RBC_REC_location.data.current_location
OBU_current_timestamp = RBC_REC_location.data.current_timestamp:
RBC_SEND_MA.data fla_new_MA=1;
set_current MA_value{(OBU_current_location, previous_MA, previous_train_pos);
RBC_SEND_MA data MA_timestamp = map_timebase(OBU_cumrent_timestamp)
send(RBC_SEND_MA)}
SEND_MA_TO_OBU WAIT_ACK
en: |_count_MA_sent = 1; |_timeref_last_MA_sent = I;
du: check_resend_MA();
2 =
[MA_ACK_from_OBU_flg ==
- 3
function check_resend_MA
—
~
[t- 1 timeref last MA_sent > 1]
OO
é b {I_timeref last MA sent=t
I_count_MA_sent = |_count_MA_sent +
[ I_count_MA_sen RBC =1
(t - I_timeref_last_| n set_t (OBU_current_location, previous_MA, previous_train_pos),
[RBC_fail == 1] ~ RBC_! _MA . data.MA_timestamp = map_timebase(OBU_current_timestamp);
3 | | send(RBG_SEND_MA);}
o e
S A\
FAIL [RBC_fail == JE
@)
function o_timestamp = map_timebase(i_OBU_timestamp)
v {o_timestamp =t } Currently, we use the local timestamp. as
(_‘, the mapping function needs to be defined.
J
funclion set_cument_MA_value(i_OBU_location, i_previous_MA, i_previous_rain_pos)
I [i_OBU_location < i_previous_MA + i_previous_train_pos]
A -~
L, (-
28 -
{RBC_SEND_MA.data MA_value = 0; D_MA.data.MA_value = 1000;
s = INIT_TRAIN_POSITION_VALUE ain_pos = i_OBU_location
AA = RBC_SEND_MA.data MA_value:}
'y .
o O
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Figure 11 Behaviour of the RBC Component

3.2.6  Behaviour of the Moving-block System: Train Component

Figure 12 reports a simple statechart that represents the train behaviour, and it was introduced for simulation
purposes, as the train is not strictly part of the moving-block system, but it belongs to the controlled
environment. Hence, the one presented is not a faithful train model, but rather a model that enables the whole
moving-block system to be simulated, with variations of speed and space, based on user’s input and on the
brake activated by the OBU (variable in_brake). From the architecture view (Figure 4), the user can select the
current speed of the train, and set the value for the in_speed variable, coming from the SPEED parameter
(set to 30 in Figure 4). The statechart includes two states: TRAIN_STANDING and TRAIN_MOVING. In the
second state, the location of the train (variable out_space) is computed based on the selected speed and the
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location of the train when the train was standing (out_space_old). The constant parameter 0.05 is used simply
to adjust the simulation and has not physical meaning.

(TRAIN_DATA T 7
en: out_space = 0;

I [in_brake == 0 && in_speed > Q]
(TRAIN_STANDING N (TRAIN_MOVING N
en: out_train_stopped = 1; en: t_ref = t; out_train_stopped = 0;

du: out_space = (in_speed * (t - t_ref))*0.05 + out_space_old;
| ex: out_space_old = out_space;

[in_brake == 1]

o —————————————

Figure 12 Behaviour of the Train Component

3.3 ATO
3.3.1  ATO Overview

Figure 13 depicts the automatic train operation system (ATO) and the contextual elements of the environment
with which the ATO system interacts. Specifically, we have a train DRIVER, the ETCS On-board Unit (called
OBU, in the following), which is the on-board automatic train protection (ATP) system, and the TRAIN.

The OBU interacts with the ATO to send information about certain external conditions, configuration data, as
well as the values of the MA received from the RBC. In our simplified context, the MA values represent also
the missions of the ATO. In a more realistic context, missions and MA would be separated.

The DRIVER is in charge of starting the automatic driving mode of the ATO. In this mode, the ATO accelerates

the train until a certain target speed, and then brakes the train sufficiently in advance before the end of the MA

received from the OBU. We will see that in the integrated model, presented in Section 3.4 all accelerate and

brake commands will pass through the OBU. However, at this stage, it is assumed that the ATO has full control
(MA) start

of the train.
w

accelerate /
brake

movement
authority

Onboard

Unit
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Figure 13 Overview of the ATO in its context
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ATO Model Architecture

Figure 14 represents a high-level view of the ATO component (light grey block) in its environment. The
environment is composed of three components:

DRIVER (cyan block), which starts the ATO system (label POWER_ON), commands the automatic
driving function (label DRIVE), and activates the train brake lever (label TBL). These commands are
set by the user, and forwarded to the ATO.

OBU (Stub) (green block), which is a simplified version of the OBU considered in the moving-block
system from Section 3.2, and limited to those functionalities that are relevant for the ATO, namely
sending the movement authority (label MA), setting the status of the external conditions that allow the
ATO to change its internal states (ATO_COND, ETCS _COND), and sending data configuration
messages (DATA) when requested by the ATO at start-up (DATA_REQ).

TRAIN (red block), which is again a representation of the train dynamics, although slightly more
complex with respect to the one used for the moving-block system and presented in Section 3.2.6.
Indeed, the block takes as input the acceleration and braking commands coming from the ATO
(ACCELERATE, BRAKE, full_service _brake), and changes Speed and Space accordingly. Two
parameters (INC_CONST_SPEED, INC_CONST_SPACE) are used as input to enable a realistic
simulation.

The ATO component takes input from the different elements of the environment and produces output, mainly
towards the TRAIN component. Besides the input to the ATO already mentioned above, the ATO has also two
external input variables, which are in_EXT_CONST_START_BRAKE, a parameter to decide when the system
shall start braking with respect to the end of the MA (currently arbitrarily set to 0.4), and in_EXT_fault, which
simply injects a failure in the ATO system.

2l

-

E‘—. i POWER_ON out POWER_ON [POWER_ON]
in DRIVER_pawer_on
— n_DRIVE oul_ msg DRIVE —><_  [DRIVE]
[DRIVE] in_DRIVER_DRIVE_msg oul_ful_sarv_braka
“ [TBL] e 1 DRIVER TBL [full_service_brake]
DRIVER -
X in_ETCS_OBU_ATO_condiions 0K
[DATA REQ) sfin_msq_data raquest out ATO)condions OK [ATO_COND)
out_msg_cata_requestf=5<_ [DATA REQ]
[DATA] in_ETCS_OBU_msg_dala
E—- in_ETCS_candiians_OK out msg data—=<"  [DATA]
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Figure 14 Architecture of the ATO Model

In the following section, we describe the internal behaviour of the ATO block, including also some details of
the TRAIN block that are relevant to understand the ATO behaviour.
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The DRIVER and OBU components of the environment are used only for simulation purposes, to enable
debugging and simulation of the ATO behaviour, and therefore their internal behaviour is not reported here.

3.3.3 ATO Behaviour: Operating Modes

Figure 15 reports the main statechart of the ATO named ATO_Operating_Modes, which controls the changes
of ATO operating modes, based on external conditions (as for the other models, also in this case we have a
MESSAGE_QUEUE_MANAGER block, but it is not reported in the figure). The statechart has three main
states, namely NO_POWER_NP (representing the initial status of the system when it is not activated yet by
the driver), POWER_ON (state of activation) and FAULT_FA (state of fault due to external conditions).

In the POWER_ON_STATE, the ATO system starts from the configuration state (ATO_CONFIG_CO), and
requests the data to the OBU. When the data is received (I_msg _data flg == 1), the system goes to
ATO_Not_Available_NA. If the operational conditions are fulfilled, the system goes to ATO_Available_AV.
Note that the operational conditions are fulfilled when both the ATO and ETCS conditions coming from the
OBU (ATO_COND, ETCS_COND already mentioned in Figure 14) are fulfilled, and this is controlled by the
check_op_conditions function in Figure 15. From the ATO_Available_AV state the system goes to the
ATO_Ready RE state, if the engagement conditions checked by the function check_eng conditions are
also fulfilled.

From the ATO_Ready_ RE state, the system goes to the ATO_Engaged_ EN state upon external command
coming from the DRIVER block. This external command identified by the variable |_DRIVE_msg_flg, which is
a local variable linked to the DRIVE label from Figure 14. The internal part of the ATO_Engaged EN state,
which is the main state of the ATO and is concerned with the automatic driving of the train, will be described
in Section 3.3.4.

From the ATO_Engaged_EN state, the system can move to three states: back to the ATO_Available_AV when
its mission is finished (I_end_of_control_cycle == 1); back to the ATO_Not_Available_NA, in case ETCS
conditions are not fulfilled anymore; to the ATO_Disengaged_DE state if only the ATO conditions are lost, but
the ETCS conditions are still fulfilled. In case ATO conditions are restored within 5 seconds, the system goes
back to the ATO_Engaged_ EN state, otherwise the system starts the full service brake going to the ATO_FSB
state. When the train is standing (in_train_moving == 0), the system goes back to ATO_Not_Available_NA.
This state is also reached if the driver activates the TBL, hence taking charge of braking the train.

Note that the ATO system does not activate the brake in case ETCS conditions are lost, as the train control
should be performed by the OBU in this case.
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Figure 15 Statechart representing the Operating Modes of the ATO
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3.3.4 ATO Behaviour: Speed Control and Train

In this section we describe how the ATO system controls the train speed, based on the MA messages received
from the OBU.

Figure 16 reports the internal behaviour of the engaged state of the ATO, called ATO_Engaged_EN. Instead,
Figure 17 reports the simple model of the train, which is controlled by the ATO.

The statechart ATO_Engaged_EN has two main states, UPDATE_MA and DRIVE_TRAIN. The former takes
care of unpacking new MA messages coming from the OBU. The latter is in charge of commanding
acceleration (variable out_acceleration) and brake (out_brake) based on the space to the end of the MA
(out_space_to_EOA) which is continuously computed by the function get_current_space_limit, analogous
to the one already described in Section 3.2.3, and included in the OBU of the moving-block system. The
DRIVE_TRAIN statechart has four exclusive states: NO_ACCELERATION, in which the train does not
accelerate; YES_ACCELERATION, which is active until the target speed is reached; BRAKE, which is
activated if the space to the end of the MA is lower than a certain rate set by the input parameter
CONST_START_BRAKE; STANDING, which is the final state, reached when the mission is finished, the train
is standing, and no new MA is received.

The states in the ATO_Engaged_EN statechart have some corresponding states in the statechart that
represents the train behaviour in Figure 17. This statechart includes the states TRAIN_STOPPED,
TRAIN_MOVING, TRAIN_CONSTANT_SPEED and TRAIN_BRAKING, which have an intuitive role. As the
model of the train is a simplified version of the actual dynamic of a train, the space and the speed are increased
constantly according to the input parameters INC_CONST_SPEED and INC_COST_SPACE whenever the
train is moving. When simulating the model, these parameters shall be adjusted to enable a realistic simulation:
they are currently set to 0.001 and 0.0001, but different values maybe set if the simulation is too slow or too
fast (this depends on several factors, including the characteristics of the PC used to run the simulation).

Deliverable nr. | D4.3
Deliverable Title | Validation Report Page 26 of 70
Version | 1.4 -06/12/2019



Validation

%H STR a I'I Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block

ﬂTO_Engaged_EG N
/UPDATE_MA Ty
| i
! 1
] 1
i H
| (ATO_MA_RECEIVED [I_MA_msg_flg == 1] H
f {l_Ma_wvalue = in_MA_msg.data.MA_value; 1

|_MA_reference = in_current_location;} |
i
]
. J
/DRIVE_TRAIN N
en: out_space_to_EOA = get_current_space_limit{l_MA_value, |_MA_reference, in_current_location);
du: out_space_to EOA = get_current_space_limit{l_MA_value, |_MA_reference, in_current_|ocation);
ex: out_space_to_EQA=0;
NO_ACCELERATION [in_current_speed < |_target_speed] YES_ACCELERATION
du: out_acceleration = 0; du: out_acceleration = 1;
1 | ex: out_: ation = 0;
2|
[in_current_speed >= |_target_speed]
.2 [out_space to EOA=>= .
{_MA_wvalus * CONST_START_BRAKE]] [out_space_to EOA < ..
{_MaA_value * CONST_START_BRAKE]]
2
[out_space_to_EOA < .. - 5
{LLMA_value * CONST_START_BRAKE)] (BRAKE
du; out_brake = 1;
STAMNDING ex: out_brake = 0;
en: |_end_of_control_cycle = 1;
J [in_current_speed == 0] Y.
function o_current_space_limit = get current_space_limit{i_MA_wvalue, i_MA_reference, i_current_|ocation)
{o_current_space_limit = i_MA_value + i_MA_reference - i_current_location;}
\ 4
. v

Deliverable nr.
Deliverable Title
Version

Figure 16 Statechart representing the internal behaviour of the ATO Engaged State

D4.3
Validation Report Page 27 of 70
1.4 -06/12/2019



“XRSTRail

‘TRAIN_CONTROL
du: out_door_status = in_door_status;

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

RAIN_STOPPED

) (TRAIN_MOVING )
en: en:
out_speed = 0; [in_acceleration > 0] out_train_moving = 1;
out_train_moving = 0; du

out_speed = out_speed + INC_CONST_SPEED;
out_space = out_space + out_speed * INC_CONST_SPACE;
[in_brake == 1 || in_full_service_brake == 1]

2

[out_speed == 0]

[in_acceleration == 0]
1
)

[in_acceleration = 0]

2
RAIN_BRAKING

1
TRAIN_CONSTANT_SPEED
[in_brake == 0 && in_full_service_brake == 0] | du:

u:
out_speed = decrease_out_speed(out_speed);
out_space = out_space + out_speed * INC_CONST_SPACE;

out_space = out_space + out_speed * INC_CONST_SPACE;

1
[in_brake == 1 || in_full_service_brake == 1]

function o_speed = decrease_out_speed(in_out_speed)

[in_out_speed - INC_CONST_SPEED >=0]
1

{o_speed = 0;}

8]

{o_speed = in_out_speed - INC_CONST_SPEED; }

0~

Figure 17 Statechart representing the Train model for the ATO
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Figure 18 Multiple MA received and corresponding speed and space

To understand the interaction between the different components that appear in Figure 14, and especially the
ATO, the OBU (Stub) and the TRAIN, it is useful to look at the scenario reported in Figure 18. The figure shows
the space crossed by the train, its speed, and the variations of the variable out_space _to_EOA indicating
the space remaining to the end of the MA. In the scenario, four MA messages are received, with a constant
value of 1000 meters. At each iteration, the train accelerates until the speed of 80 Km/h is reached, keeps its
speed constant and then starts braking when approaching the end of the MA. If a new MA is received, the train
starts accelerating again.
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Figure 19 Brake and acceleration commands in relation to the train speed

To better appreciate the variation of speed, in relation to acceleration and brake, it is useful to look at Figure
19, which is associated to the same scenario with the reception of multiple MA messages described above. In
the figure, we see that the acceleration command is active until the target speed of 80 Km/h is reached, and
the train starts braking after a while to avoid violation of the MA. This process is repeated for four times, i.e.,
anytime a new MA message is received. At the end, no new MA is received, and the train reaches 0 speed (in
Figure 16 this activates the variable |_end_of control_cycle). To activate again the automatic driving mode,
and enter the ATO_Engaged_EN state, a new MA must be received, and the DRIVER block needs to send
another DRIVE message to the ATO system (see Figure 14).

3.4 Integrated Model

The moving-block system model and the ATO model described in the previous paragraphs were developed
independently, and then integrated in a single model. While the initial models maintained their overall nature
and structure, adjustments were performed to enable a coherent simulation. In the following, we describe the
architecture of the integrated model, and we present scenarios of its behaviour in a typical, successful case,
and in case of violation of the MA by the ATO. We do not discuss again the details of the behaviour of the
different blocks, as these were already described in the previous sections.

3.4.1  Integrated Model Architecture

Figure 20 and Figure 21 report the two parts that compose the overall architecture of the model that integrates
moving-block system components and ATO. The DRIVER and TRAIN blocks come from the environment of
the ATO model. The ATO block is architecturally equivalent to the original one. The RBC and LU come from
the moving-block model. The RBC has been adapted, in that it now includes an additional constant as input,
named DEC_CONST_MA. Such constant value is used to constantly decrease the MA value sent to the OBU
during the simulation. The value is decreased every time a new MA is requested. This was necessary in order
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to have a realistic simulation in which the MA value changes at each iteration and it is not constantly set to
1000, as in the initial model.

The OBU block is substantially the same as the original one described in Section 3.2.3, with some additional
input (DATA_REQ, full_serv_brake_to_OBU, etc.) that come from the ATO model. Indeed, the OBU is the
only component that has a direct control of the TRAIN. All the commands from the ATO (accelerate, braking)
are forwarded to the OBU, which in turn forwards them to the TRAIN component. With this architectural
solution, the OBU has full control of the train movement.

The OBU also has an additional input named BRAKE_SPACE. This parameter indicates the number of meters
(200, in the figure) before the end of the MA that the system should consider to start emergency braking. This
happens only when the ATO fails to control the train, and does not brake sufficiently in advance. Such a
scenario can be triggered by setting to -1 the input parameter of the ATO named
IN_EXT_CONST_START_BRAKE, as in Figure 20. If the user wishes to trigger a normal scenario, in which
the ATO brakes before the OBU, then the parameter shall be set to values such as 0.4, as in Figure 14. These
scenarios will be discussed in the following sections, in which we describe the behaviour of the integrated
model.
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Figure 20 Architecture of the model that integrates Moving-block system and ATO (Part 1)
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Figure 21 Architecture of the model that integrates Moving-block system and ATO (Part 2)

3.4.2 Integrated Model Behaviour

Figure 22 and Figure 23 represent the main variables of the considered integrated model, in a normal scenario.
In the scenario, the ATO drives the train based on the MA produced by the RBC and forwarded by the OBU,
and the OBU does not activate the emergency braking. Specifically, Figure 22 shows the value of the signal
space_to_EOA as computed by the OBU, which varies in relation to the train movement and to the new MA
value received from the RBC, which decreases constantly each time the OBU sends a position report. The
ATO accelerates until a maximum speed value, and some space before the end of the movement authority, it
starts braking. Then, when a new MA is received, the system starts moving again, after the DRIVER has
allowed that, by triggering the signal in_DRIVE in Figure 20.

Figure 23 focuses on the speed, accelerate and brake variables for the same scenario.

Figure 24 shows the behaviour of the system in case the ATO does not stop the train as expected, and the
OBU is forced to brake. The MA values included in the messages from the RBC (pink lines) decrease until the
OBU starts braking, so that the train is stopped before the end of the MA.

Deliverable nr. | D4.3
Deliverable Title | Validation Report Page 32 of 70
Version | 1.4 -06/12/2019



Validation

%H STR a I'I Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block

space_to_EOA M speed M space

2000

1800

1600

1400

1200

1000

800

0 500=+3 100e+4 150s+4 200e+4 250=+4 300e+4 350e+4 4002+4 450e+d4d 500s+4 550e+d 6G00s+4 6 50e+d 7T002s+4 750e+d B002+4 £ 50e+4 0D00=+4 0O50e+4 100e+5

Figure 22 Normal behaviour of the ATO in the integrated model
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Figure 23 Normal behaviour of the ATO in relation to acceleration, brake and speed
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Figure 24 Case of MA violation by the ATO

Requirements Elicitation and Simulation with Simulink: Observations

This section is dedicated to discuss the observations through the usage of Simulink-Stateflow for early
requirements elicitation and simulation in the context of ASTRail.

Immediate visual feedback on system behaviour: when modelling through Simulink-Stateflow, the user
can simulate the requirements, and have an immediate feedback of the system behaviour. This is not
possible with a static diagram. Such feedback allows the user to increase their confidence on the
correctness of the requirements, but also to identify incomplete requirements. A typical case of
incomplete requirements occurs when one observes the simulation flipping between neighbouring
states: this may occur because the conditions to remain in a certain state are not well defined. In other
cases this may occur because there are variations of the input variables that are too frequent, leading
to frequent switches between states. A case of incomplete, or too generic, requirements emerge when
there is a the need to take some practical decision when modelling the system. Sometimes, the
decisions were not necessarily guided by the requirements, which tend to abstract away from concrete
behaviours. By asking the domain expert for clarifications, it was possible to further refine the
requirements.

Ease of interpretation for domain experts: in our context, the models were developed by formal
methods experts, and were agreed by the domain expert. After an explanation of the principles of the
Simulink-Stateflow language, and using the images of the developed Simulink-Stateflow diagrams as
references, the domain expert was able to pinpoint undesired behaviour and defects in the model. At
the same time, the domain expert could more easily visualise problems with the requirements that
were used as a source to define the model, and take corrective actions.

Simulation time depends on multiple factors: the model and its parameters have been set to execute
a simulation in a reasonable amount of time, and observe the train movement, acceleration and speed
with some degree of realism. The goal was to have a feeling of the overall behaviour, and not to find
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the correct values of each parameter. However, the simulation time may have very relevant variations,
also using the same parameters’ values. These time variations are related to the processing time of
the simulation, and may depend on several factors, including the size of the simulated model, and the
technical capabilities of the PC. The reader will notice that in Figure 14 the parameters for the train
INC_CONST_SPEED and INC_CONST_SPACE, which are used to increase speed and space of the
train, are setto 0.001 and 0.0001, respectively. In Figure 21, where the integrated model is presented,
these parameters are set to 0.1 and 0.01. This increase in the parameter was driven by the fact that,
since the model was larger, the previous parameters would be too low to have a realistic change of
the values of space and speed. Overall, when using Simulink-Stateflow for the purpose of a realistic,
early simulation, these aspects need to be taken into account.

e Nondeterminism not supported: the Stateflow language does not support nondeterministic choices.
This implies that the user has to define all the input and associated output, without leaving space for
nondeterministic behaviour. On the one hand, this leads to a more faithful representation of the actual
code that will run on the real system, which will be deterministic. On the other hand, this leaves less
space to abstract away from deterministic behaviours that are not decided during the early stages of
development, therefore leading to a more complex, but also more restricted model.

¢ Not a faithful model of reality: while the user is constrained to take some choices to let the simulation
run, some of the choices taken are unavoidably a simplification of reality. For example, in Figure 11,
the RBC always sends a MA with a value of 1000 meters. Although this allows the user to have an
acceptable simulation as shown in Figure 18, this is not what would happen in reality, as the value of
the MA may depend from the train position in relation to other trains. When integrating the moving-
block system with the ATO, another problem emerged: the MA value should be reduced in a
progressive manner, in order to have the ATO brake the train (we recall that the ATO mission is
equivalent to the MA in this model). To address this issue and have the simulation run presented in
Figure 22, the RBC needed to be modified so that it would decrease the MA value each time an MA
was sent. This is of course a simplification of reality, oriented to enable a coherent collective behaviour
of the different components. This is acceptable at this stage of development, as our goal is to assess
the logic of interaction. However, when more detailed models are defined, these issues need to be
considered, and realistic choices need to be taken.
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4 Qualitative verification

In this section we provide a description of the qualitative/functional formal specification and verification process
followed, based on the process described in Sect. 2.2.2.

As said in Section 2, the initial step of the validation process has been the refinement of the initial moving block
model, its extension with ATO modelling, and the animation of the composition with the Simulink-Stateflow
tool. The result of this step is a stable set of natural language as reported in Annex A — System Requirements.
At this point, our interest is to define a formal model, consistent with respect to established requirements, upon
which to verify the functional (behavioural) requirements of the system.

Our choice is to pass from the initial requirements and initial Simulink model towards a preliminary behavioural
semi-formal description of the system based on UML statecharts.

Before tackling the issue of translating the design of the source specification language of a formal-verification
tool, that could in principle be any of tools available at the state of art (e.g. CADP, ProB, SPIN), it is important
to have a system design that is as clear as possible.

The Simulink model might play with some success this role, but it has three main drawbacks: the first one is
that it relies on a proprietary notation which only the commercial tool is able to animate (and partly verify), the
second one are the strong assumptions made in the composition of concurrent, but independent, subsystems
(which are sequentially ordered and executed synchronously one step at a time), and the third one is that the
Simulink model is inherently deterministic therefore specific choices need to be taken, possibly leading to over
specification, to support the system simulation.

Our choice of using standard UML has been impacted by the fact that this notation has a public specification
(OMG UML2.5 Specification)!, a rather clearly defined semantics when certain problematic aspects are not
used, and the support of a rich set of design, transformation, animation and verification tools some of which
are commercial only (e.g. IBM Rational Software Architect?, MagicDraw?, PTC Integrity Modeller®, Enterprise
Architect®), while others free and open source (e.g. . OpenMBEES®), UML Designer’, UMC8, Papyrus UML®).
Clearly also the standard UML choice is not immune from drawbacks, both in terms of tool support and
specification language aspects, with which we will have to deal.

In Section 4.1 we will show our reference UML description of the system, while in Section 4.2 we will describe
the followed approach for translation the UML description into a real formal model based on the Event B
notation and in Section 4.3 the present to verification process conducted with the tool ProB while in Section
4.4 we will present some conclusions and observations.

4.1 The UML system description

In this section, after a brief summary of the graphical elements used in the diagrams (subsection 4.1.1), we
will hint the main characteristics of our UML modelling of the Moving Block system and the ATO system
(subsection 4.1.2), before presenting the detailed UML models of the OBU (subsection 4.1.3), RBC (subsection
4.1.4), and ATO (subsection 4.1.5) system components.

4.1.1  Briefs on the used UML statecharts notation

In the following sections we will present a graphical representation of the OBU, RBC, ATO components of the
system. Those graphical representations will make essentially use of the following symbols:

denoting the initial state of a composite sequential state.

1 https://www.omg.org/spec/UML/2.5.1/PDF

2 https://www.ibm.com/developerworks/downloads/r/architect/index.html
3 https://www.nomagic.com/products/magicdraw

4 www. ptc.com

5 https://sparxsystems.com/products/ea

8 http://www.openmbee.org

7 http://www.umldesigner.org/

8 https://fmt.isti.cnr.it/'umc

9 https://www.eclipse.org/papyrus/
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® denoting the exit point from a composite state (or submachine)
denoting a simple state of the model

AR
=) denoting a composite state of the system separately expanded (i.e. a submachine).

o1_startcycle:
tick/ Timer.ok

denoting the information associated to a transition between states, where in particular:
- The red identifier represents a unique label associated to the edge (used for the ProB translations)
- The trigger part (on the left side of "/") denotes the event triggering the transition (highlighted in italic) and
possible a guard condition.
In particular:
The trigger "tick" denotes a clock event signalling the passing of 500 ms.
The trigger "istep" denotes the execution of an internal step, not trigger by any external event.
- Transitions without trigger (with trigger represented by "-") denote "UML completion transitions" and,
as required by the UML semantics, have a higher priority w.r.t all other triggered transitions.
- The actions part (on the right side of "/") denotes the sequence of actions performed when the transition is
fired.
- The action of sending a signal to another active component is highlighted using a bold case.

- The are used to denote the abstract events corresponding to the triggering of the
transition (useful for mapping the properties to be verified to the actual system evolutions).
Notice that the red and parts of this information are not part of the UML specification and have just an

informative role (with no semantic effects).

For example the diagram fragment illustrated in Figure 25 A statechart diagram fragment describes that when
the state checkMSG is active, when the signal istep can be dispatched from the event pool, and when the
guard LastMA != null is true, then the signal istep can be removed from the pool and the object can
move into the update BC state, after sending to the RBC object the msgACK signal. That system evolution,
to which has been given the name o012 new_MA corresponds the to tree abstract events (maybe mentioned

in the requirements) i.e. the fact of having received a new MA ( ),the fact of having sent the
corresponding ACK ( ), and the sending of the MA data to the ATO ( ).
012_new_MA:

istep [LastMA !=null]
/ RBC.msgACK;
ATO.notifyMA(LastMA);

( checkMSG } L~ » update_ BC )

Figure 25 A statechart diagram fragment

We refer to the OMG UML2.5 Specification - Section 14 State Machines - for a more detailed and complete
description of the semantics of UML statecharts and of the statecharts graphical notation.

4.1.2  Some differences w.r.t Simulink/Stateflow modelling

The semi-formal specification language used for this step, and the necessary choices to be performed in the
modelling, inevitably introduce a specific language/tool flavour to the result. This is the reason for which the
formal model resulting from this step is somewhat different from the Simulink model already developed during
the requirements elicitation phase.

Some examples between the two semi-formal methodologies of system design are the following:
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- The Simulink model relies on internal timers to represent time-related aspects of the model, while our
UML models relies on explicit "tick” signals arriving from the environment as a way to represent the
same aspects.

- In a Stateflow chart the transitions exiting from a state are numbered and their number represents the
order in which they should evaluated for execution, while in UML there is no such numbering and any
priority among the exiting transitions should be explicitly modelled by the conditions appearing in the
transition guards.

- In Stateflow a transition which has source in a composite state has a higher priority than any transition
nested inside the composite state itself, while in UML the converse applies.

- When a Stateflow model includes different statecharts representing concurrent entities, the possible
evolutions of the system are obtained by letting each component to advance one step, in a statically
fixed order. The UML definition does not actually specify the behaviour of a system composed by
several independent state machines. Only in the case of concurrent regions of the same parallel state
the UML definition specifies that all the fireable parallel transitions should be fired in the same run-to-
completion step in an unspecified order. In our UML model of the system we suppose that the state
machines corresponding to the various system components (OBU, RBC, ATO) can evolve
independently and asynchronously, being coordinated only through their exchanges of messages, or
explicit - time modelling - "tick" signals. We moreover suppose that the event pools associated to each
object are plain FIFO queues.

4.1.3 Introduction to the Moving Block and ATO UML modelling

The three main components of our system are the OBU, the RBC, and the ATO. In our case, we abstract from
a separate modelling of the LU as an independent entity, and we consider it just an internal sub-activity of the
OBU. When not necessary for the verification of the system requirements, the interactions of our main
components with other external components of the system are abstracted without explicitly modelling the
details of them. For example, when the OBU commands an emergency braking because of an ATP violation,
we model this fact as an occurring abstract event (the abstract events occurring as logical effect
of a transition are highlighted in green) without actually modelling the sending of signal from the OBU the train
component.

Following the same abstraction principle, we do not model the precise data and messages being exchanged
between OBU and the RBC (or OBU and ATO), like the actual train position data or the actual structure of the
movement authority data. From our abstract point of view, it is sufficient to know that a new movement authority
has been sent by the RBC and received by the OBU, or that a new Position Report has been sent by the OBU
and received by the RBC.

In the design of ATO we abstract from the actual values of the current movement authority, the current train
position and speed, and therefore from the actual acceleration deceleration commands used to drive the train
according to some driving strategy when in the Engaged or Disengaged states. Our model also does not take
into consideration all the driving aspects related to the interactions with the Trackside component related, e.g.
to the details of the possible train mission data.

Finally, we model the OBU and RBC as concurrent, independent periodic activities that are activated with a
period of 500 ms, and 500 ms is also the atomic step at which the ATO can perform a state transition.

This means, for example, that the ATO receives any relevant data from the OBU no more than once between
from one step and the next. No assumptions are made on the possible way in which the OBU, RBC, ATO
cycles may overlap, i.e. any interleaving of their internal activities is possible.

Since we are using for the modelling only Standard UML notations (i.e. not using any specific UML-RT or
SysML profiles) we abstract from a real-time modelling of time and we relate all the temporal system properties
the equivalent number of the component cycles. For example, since the OBU cycle is of 500 ms, the
requirement of not sending a new Position Report before 5 seconds from the last one is translated into the not
sending of a new Position Report before 10 OBU cycle have been completed. Similarly, the requirement of
stopping the train if no MA is received within 7 seconds is transformed into the modelling of the train stopping
if no MA is received before 14 OBU cycles have been completed.

4.1.4, OBU

Figure 26 shows the high-level structure of the UML OBU state machine.
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The OBU behaviour is that of a cycle that is triggered by a tick signal that arrives every 500 ms.
At each cycle, three main sub activities are performed in sequence:

1) the computation of the current train position

2) the (possible) sending of the position of RBC, and

3) the handling of (possibly arrived) messages and update of the Braking Curve (with possible brake
activation in case of ATP violation or MA timeout).

If the cycle last more than 500ms a fatal error occurs and the train stops.

OBU defers receiveMA,
Config_request
o017 _fatalerror:
tick/ Timer.ok;
4 Running N\ ATO.notifyETCS(false);

ATO.notifyATO(any:bool);

Compute Position

contmue

o1_startcycle:
tick/ Timer.ok

.

v

Send PR Stopped
P cyCIewait H
I continue

018_stopped:

tick/ Timer.ok;
ATO.notifyETCS(false);
ATO.notifyATO(any:bool);

Handle_Msgs

Q
continue] T brake

- /

Figure 26 OBU State Machine

The computation of a new train position starts with a Request being sent to the Location Unit (LU). The Location
Unit replies either with a new position (notified to ATO), or with the notification of the failure to compute the
current position. Figure 27 show the expansion of the Compute Position stub present in Figure 26. The
sending of istep signal to the object itself (the OBU) is a necessary trick to avoid the use of transition without
trigger (i.e. completion transitions) inside the Send_PR submachine (see Figure 28).
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/ Compute_Position \

02_loc_request:

-/

03_position_ok:

- / RecentPR := NewPR; o04_position_fail:
PR_age :=0; - / self.istep
ATO.NotifyPOS(NewPR)
self.istep;

continue

Figure 27 The Compute_Position submachine

Figure 28 shows the activity that must be performed for deciding whether a new Position Report (PR) has to
be sent to RBC. The sending occurs only if a "recent position" of the train is available, and 5 seconds are
passed from the last sending of a Position Report. A "recent position" is a train position computed either in
this cycle or in the previous one (i.e. not older that 1 second). Figure 28 show the expansion of the Send_PR
stub present in Figure 26.

/ Send_PR \

05_no_position:
istep [RecentPR = null
/ if PR_delay < PR_limit
{PR_delay := PRdelay+1};
self.istep;
NO_POSITION

06_too_old: o7_sendPR: 08_tooearly:

istep [RecentPR != null and istep [RecentPR != null and istep [RecentPR != null and
PR_age > PR_maxage] L] PR_age <= PR_maxage and PR_age <= PR_maxage and

/ PR_age :=0; PR_delay >= PR_limit] PR_delay < PR_limit] 7
if PR_delay < PR_limit / PR_age :=0; 7 / PR_age :=PR_age+1;
{PR_delay := PRdelay+1}; PR_delay :=0; PR_delay := PRdelay+1;
RecentPR := null; RecentPR := null; self.istep;
self.istep; RBC.msgPR; TOO_EARLY
TOO_OLD_PR self.istep;
b— _
- J
continue

Figure 28 The Send_PR submachine

After having possibly sent a new PR, the OBU activity proceeds with the elaboration of the arrived messages,
as shown by Figure 29. Correctly arrived Movement Authorities (MA), if any, are received, and notified to ATO
(015 _end_cycle). If no Authority is arrived and the 7 seconds timeout is expired train braking is activated
(013_MA_timeout). If a new Movement Authority is arrived, an ACK msg is sent to RBC (012_new_MA) and
the received MA is forwarded to ATO. If the MA timeout has not expired (whether or not a new MA has just
arrived) the Breaking Curve is updated and this activity might trigger an emergency braking in the case of an
ATP violation (016_ATP_violation). If a ZeroMA has just been received the activation of the brakes is always
performed. When braking, the loss of the ETCS and ATO conditions is notified to ATO.

Figure 29 show the expansion of the Handle_Msgs stub present in Figure 26.
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Handle_Msgs

09 _receive_MAmsg:

010_MAmsg_fail:
msgMA(ma)
/

o11_msg_config
config_request
/ ATO.ATO_config;

013_MA_timeout:

MA
;n :/IgA aggf)ﬂ- istep [MA_age > MA_limit]
LastMA := ma; AN / ATO.notifyETCS(false);

ATO.notifyATO(any:bool);

o14_no_MA:
istep [LastMA = null and

=~ MA_age <= MA_limit]
012 _new_MA: / MA_age = MA_age+1;
istep [LastMA !=null] -- No MA available
/ RBC.msgACK; 1 NO_MA brake
ATO.notifyMA(LastMA);
Yy v
( update_BC \
o157endicycle: 016_ATP_violation:
- [LastMA != ZeroMA] -/ ATO.notifyETCS(false);
/ ATO.notifyETCS(true); ATO.notifyATO(any:bool);
ATO.notifyATO(any:bool);
LastMA := null;
‘ A\

&)

continue

Figure 29 The Handle_Msgs submachine

The "any:bool" notation used in ATO.NotifyATO(any:bool) signalling indicates that any nondeterministic
true/false value might be sent as ATO_Condition.

4.1.5 RBC

The RBC behaves as a cycle that is triggered by a tick signal that arrives every 500 ms. If the whole RBC cycle
lasts more than 500ms a fatal error occurs and the RBC shuts down.

As shown in Figure 30, at each cycle four main sub activities are performed. The first activity deals with the
handling of all the arrived messages (PR and ACK). If a Position Report is arrived the next step is to compute
and send a new Moving Authority. If no Position Reports are arrived, but there are still old MA that might have
to be resent the next step is to handle the possible resending. If there are no MA to compute or resend we
complete the cycle.

D4.3
Validation Report
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RBC defers receiveACK, receivePR
4 Running N r15_fatalerror:
tick/ Timer.ok
Receiving | Resend_MA
CycleWait > resend
ﬁ/ oo
ri1_start_cycle:
tickl Timer.ok continue restart
self.istep;
; v
Compute_MA
ShutDown
oo
continue
A1
r16_shutdown:
( Send_MA \ tick/ Timer.ok
OO
restart

RBC State Machine

Figure 30 The RBC State Machine

In the Receiving phase (see Figure 31) all the incoming messages (msgACK, msgPR) are acquired, and the
next step is selected depending on them. The reception of new Position Report triggers the computation of a
new MA, the reception of an ACK disables further sending of old MA. The possible loss or damage of a
message is modelled by the nondeterministic possibility of discarding a just arrived message.
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/ Receiving \
r8 _noPR_noMA:
istep
r2_receive_ACKmsg: [LastPR = null and
msgACK (outgoingMA = null or Ack_Received >0)]
/ Ack_Received := / if Ack_Received >0
Ack_Received+1; { Ack_Received :=0;
outgoingMA := null;
HANDLE_ACK };
RBC_CYCLE_CONCLUDED;
r3_ACKmsg_fail: N\ .
msgACK check events/ >
/ restart
r4_receive_PRmsg: r7_noPR_noACK:
msgPR/ istep
LastPR := NewPR; M [LastPR = null and
r5_PRmsg_fail: outgoingMA != null and Ack_Received=0 ]
msgPR/ / MA_age := MA_age+1;
self.istep;
MAY_RESEND
r6_PR_received: -- old MA present
istep [LastPR != null] >
/ if Ack_Received >0{ resend
Ack_Received :=0;
HANDLE_ACK};
self.istep;
\_ é"@ /

continue

Figure 31 The Receiving submachine

The computation and sending of a new Moving Authority (see Figure 32) begins with a check on the validity of
the received Position Report. If the check Fails a ZeroMA is sent instead of a NewMA.

/ Compute_MA \
/ Send_MA \
._'1 computing ) .,_>
r9_compute_NewMA: r10_compute_ZeroMA:
istep / istep / r11_send_MA:
outgoingMA := NewMA; outgoingMA := ZeroMA; istep / )
LastPR := null; 1 [ LastPR :=null; OBU.msgMA(outgoingMA);
MA_age :=0; MAiage :=0;
self.istep; self.istep;
o é J restart

continue

Figure 32 The Compute_MA and Send_MA submachines

The resending of a Moving Authority (see Figure 33) occurs only for at most n times (n=3) at intervals of x
seconds (x =1), i.e. every two cycles, for three times.
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