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1 Introduction  

1.1 Purpose and Scope 

Formal methods are mathematically-based techniques to support the development of software intensive 
systems [CLA96] [BOC09]. Normally, formal methods oriented to design and verification of systems include 
(i) a modelling language, which is used to model a system, and (ii) a verification strategy, which is used to 
verify properties on the system. Formal methods are usually associated to formal tools, which can provide 
textual or visual editors to create a model of the system, as well as automated verification capabilities. 
Formal methods have been largely applied in industrial projects, especially in the safety-critical industry, 
including railways [BBF18]. However, it cannot yet be said that a single mature technology has emerged.  

This Work Package 4 (WP4) of the ASTRail project aims to identify, based on an analysis of the state-of-
the-art and on concrete trials, the candidate set of formal and semi-formal methods that appear as the most 
adequate to be used in the railway context. In the following, when we will use the general term “formal 
method”, we will implicitly include also semi-formal methods, i.e., those methods that use languages for 
which the semantics is not formally defined but depends on their execution engine. Since formal methods 
are normally associated with tools, we will also use formal methods and formal tools interchangeably. 

To address the goal of identifying the most adequate formal methods, WP4 is structured into four tasks 
(T4.3, in bold, is the focus on the current deliverable): 

- Task 4.1 Benchmarking: this task aims at studying the state-of-the-art and state of the practice of 
formal and semi-formal methods, by gathering knowledge from the literature and railway 
practitioners. 

- Task 4.2 Ranking: this task aims at providing a ranking matrix to support the selection of the most 
adequate formal methods to be used in a certain development context. 

- Task 4.3 Trial Application: this task aims at experimenting the usage of a set of selected formal 
methods through the modelling of the moving-block system, from Task 2.1. 

- Task 4.4 Validation: this task aims at validating the usage of the selected formal methods by 
integrating the moving-block model with the automated driving technologies from Task 3.3. 

 

The current deliverable, D4.2 Preliminary Trial Report, reports on Task 4.3 Trial Application, while the 
results of Task 4.1 and 4.2 have been reported in D4.1.  

1.2 Executive Summary 

The description of Task 4.3 Trial Application, as reported in the ASTRail proposal, is as follows: 

“This task will address the modelling of the moving-block model from Task 2.1, by means of selected 
languages and tools making also some experimental parallel application of multiple techniques/tools in order 
to evaluate and compare their usability and applicability in the domain. The modelling activity will be 
complemented by a requirements quality analysis and consolidation phase, in which the system 
requirements will be automatically evaluated for non-ambiguity and clarity with NLP techniques, and will be 
updated/consolidated based on potential variations triggered during the modelling phase.”  

This deliverable follows the task description, as it was planned in the proposal. Figure 1 provides an 
overview of the followed approach. We first selected a set of 8 formal tools based on the results of Task 4.1 
and Task 4.2. The tools are Simulink, SCADE, UPPAAL, NuSMV, SPIN, ProB, Atelier B, UMC. Through 
these tools, we modelled the moving-block system according to requirements derived from Task 2.1. This 
modelling activity provided insight on the actual capabilities of the different tools, and highlighted that each 
technique is applicable for certain purposes and certain contexts.  
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Some tools, such as Simulink and SCADE, are more appropriate if one aims at creating prototypes that can 
be simulated and wishes to generate code from the models. Other techniques, such as UML and associated 
tools, are more appropriate if one wishes to provide a high-level view of the system’s architecture, and aims 
to communicate with stakeholders with different backgrounds. Tools such as SPIN or NuSMV, are more 
oriented to brute-force formal verification of large systems. Statistical model-checkers, such as UPPAAL, are 
appropriate when one wishes to verify real-time and probabilistic aspects of a system. Finally, tools based on 
the refinement paradigm, such as ProB and Atelier B, are more oriented towards top-down development of 
single systems rather than composition of systems. 

The models produced with the 8 formal techniques were used to provide a usability assessment of the 
tools, which was performed by means of a showcase involving industrial railway stakeholders. The usability 
assessment showed that the stakeholders considered Simulink and SCADE as the most usable tools, 
among those presented, indicating a preference for tools that have graphical modelling languages and 
support powerful graphical simulations. 

After this activity, we performed a requirements consolidation and refinement phase, in which the initial 
requirements of the moving-block model were refined through multiple iterations, and were automatically 
analysed by means of NLP techniques. After this activity, a final set of requirements for the moving-block 
system was produced. 

 

 

Figure 1 Overview of the deliverable content and results 
 

The remainder of this deliverable is structured as follows: 

- In Sect. 2, we report the activity of modelling the moving-block system with the selected tools; 
- In Sect. 3, we characterise the different tools based on the contexts in which their usage is more 

appropriate, according to the experience gained through the modelling activity; 
- In Sect. 4, we report the results of the usability assessment activity; 
- In Sect. 5, we report the results of moving-block requirements consolidation and refinement. 
- In Sect. 6, we provide conclusion and final remarks. 
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1.1 Related documents 

ID Title Reference Version Date 

[RD.1]  D4.1 Report on Analysis and Ranking of Formal methods D4.1 4.0 31/05/2018 

[RD.2]  D2.1 Modelling of the moving block signalling system  D2.1 1.0 29/11/2017 

[RD.3]  D2.2 Moving Block signalling system Hazard Analysis D2.2 1.0 28/02/2018 
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2 Moving Block Modelling  

The goal of this section is to illustrate the approach followed to provide the different models of the moving-
block system as described in Deliverable D2.1. In D2.1, the moving-block system was modelled by means of 
a UML diagram. This diagram was used as information source to define a set of general natural language 
requirements of the moving-block system (Sect. 2.1). Together with the UML diagram, the requirements were 
used as a reference to develop eight different models of system by means of different formal tools, selected 
in accordance to the results of Task 4.1 and 4.2 (Sect. 1.2).  

The objective of this modelling activity was not to replicate the exact same design across all the tools, but: 

A. to exploit and assess the capabilities of the different tools, and understand which tools are more 
appropriate for which development context, as described in Sect. 3; 

B. to have different models to be showcased for a usability assessment of the tools, as presented in 
Sect. 4. 

2.1 Moving-block Principles and Requirements 

This section describes the moving block principles, according to the source model provided in D2.1. 
Furthermore, it lists the preliminary requirements derived from the source model, and used as a reference to 
develop the different formal models.  
 
The main moving block principles and components, based on D2.1, are illustrated by Figure 2. We have 
three components: two on the train, and one wayside system. The train carries the Location Unit (LU) and 
the Onboard Unit (OBU). The wayside system is the Radio Block Centre (RBC). The location of the train is 
received through GNSS satellites by the LU. This sends the location to the OBU, which, in turn, sends the 
location to the RBC. Upon reception of a location from a train, the RBC sends a movement authority to the 
OBU. 
 

 
Figure 2 Moving-block principles and components 

 
The model from D2.1, which implements the principles described above, is reported in Figure 3. This 
statechart model is composed of eight different parallel regions, each one characterised by a state machine. 
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In the 1st region, a location request is generated by the OBU, and then it is sent to the LU in the 2nd region. 
The LU receives the request and sends the location to the OBU in the 3rd and 4th region. In the 5th region 
the OBU sends the location to the RBC. In the 6th and 7th region, the RBC processes the location, and 
sends the movement authority to the OBU. The last region, apportioned again to the OBU, checks a timeout: 
if the OBU does not receive a movement authority within 20 seconds, it breaks the train – after interaction 
between the partners, the 20 seconds parameter was later refined in the requirements to 15 seconds, and 
then to 10 seconds in the final requirements (Sect. 5). 
 
The model was used as a basis to interact between WP4 participants, from ISTI-CNR and SIRTI, and WP2 
participants, from Ardanuy and SIRTI. Based on this interaction, made of brainstorming meetings and 
exchange of e-mails, a set of requirements for the moving-block system was defined by ISTI-CNR, reported 
below. This initial set was then refined and consolidated, as it will be described later (see Sect. 5). 
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Figure 3 Moving-block UML Statechart from Deliverable D2.1  



 
Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 
Deliverable Title 

Version 

D4.2 
Preliminary Trial Report 
1.1 – 27/11/2018 

Page 10 of 39 

 

2.1.1 Moving-block Requirements  

Below we report the initial requirements for the moving-block system. As the reader will notice, the requirements at this 
stage do not account for failures in the different components (e.g., when the location cannot be identified). These aspects 
are treated later during the refinement of the requirements, reported in Sect. 5.3. 
 
Architectural Requirements 

1. The system shall be composed of three components one On-board Unit (OBU), one Location Unit (LU), and one 
Radio Block Center (RBC) 

2. The OBU and LU components communicate through a bi-directional channel 
3. The OBU and RBC components communicate through a bi-directional channel 
4. Each component is structured into phases 
5. Each phase is independent from the others, and each phase does not suspend itself based on the status of the 

following one 
6. Each phase produces information to be used by the following phase 
7. The information is stored in a buffer of SIZE 1, for each phase 
8. The buffer can be overwritten by the phase which writes on the buffer 

 
Functional Requirements 

1. Every 5 seconds OBU shall send a location request to LU 
2. When the LU receives a location request, LU shall compute the location 
3. After computing the location, the LU shall send the location to OBU 
4. When OBU receives the location, OBU shall send the location to RBC 
5. When RBC receives the location, RBC shall compute the movement authority (MA) 
6. After computing the MA, RBC shall send the MA to the OBU 
7. If OBU does not receive a new MA within 15 seconds from the reception of the last MA, the OBU shall stop the 

train 
 
OBU phases 

● OBU shall be composed of four phases: Generate Request, Send Request, Send Location to RBC, Receive MA 
○ Generate Request (GR) 

■ Every 5 seconds GR shall produce a location request for SR 
 

○ Send Request (SR) 
■ When SR receives a location request, SR shall send the location request to LU 

 
○ Send Location to RBC (SLRBC) 

■ When SLRBC receives a location, SLRBC shall send the location to RBC 
 

○ Receive MA (RMA) 
■ If RMA does not receive a new MA within 15 seconds from the reception of the lastMA, RMA 

shall stop the train 
 
LU phases 

● LU shall be composed of two phases: Calculate Location and Sending Location 
○ Calculate Location (CL) 

■ When CL receives a location request, CL shall produce the location of the train for SL 
 

○ Sending Location (SL) 
■ When SL receives the location of the train, SL shall send the location to OBU 

 
RBC phases 

● RBC shall be composed of two phases: Calculation of MA and Sending of MA 
○ Calculation of MA (CMA) 

■ When CMA receives a location, CMA shall produce the MA 
 

○ Sending of MA (SMA) 
■ When SMA receives the MA, SMA shall send the MA to the OBU 
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2.2 Moving-block Models Development 

This section provides references to the tools adopted for modelling, the motivation for choosing such 
languages and tools, and refers to the models developed by means of the different techniques. Discussion 
on specific modelling languages and tools peculiarities, with model excerpts, is provided in Section 3.  
 

2.2.1 Language and Tools Selection 

The selection of formal languages and associated tools was based on the results of Task 4.1 and Task 4.2 
(Deliverable D4.1) about the most mature formal languages and tools to be used in the railway context. From 
this analysis, a set of 14 languages and associated tools supporting modelling and formal verification was 
selected. Out of these 14 languages, in the context of the current deliverable, we selected a subset of 8 tools 
for modelling the moving-block system, namely Simulink, SCADE, UPPAAL, ProB, Atelier B, NuSMV, SPIN 
and UMC. We recall that the goal of this activity was mainly to assess the usability of the tools, and identify 
those that were considered more usable by railway practitioners.  

Therefore, from the original set of 14 tools, we excluded those ones that, from the Ranking Matrix produced 
during Task 4.2, were marked as ADVANCED for the feature ``Easy to Use’’. We recall that this feature was 
evaluated basing on the mathematical knowledge required to use the tool. One exception is Atelier B, which, 
although considered to require ADVANCED mathematical knowledge, was largely used in the railway 
context, and therefore was included among the selected tools1. A second exception is CPN Tools, which was 
excluded by the selection since, according to the review of the literature performed in Task 4.1 did not 
appear to have been used in industrial railway projects. Although this drawback was shared also by UMC, 
this tool was retained in the list since it is the only one that natively allows UML statecharts modelling and 
formal verification. 

Below, we report a brief description of the selected languages and tools, together with the version adopted 
for the trial. For each tool below, and for the other tools considered in Task 4.1 and Task 4.2, a detailed 
analysis was reported in Annex 3 of Deliverable D4.1, named Tool Evaluation. 

● Simulink2 (2017b): Simulink is a model-based development tool that allows the user to graphically 
draw diagrams of the system modelled in the form of input-output blocks, which are assumed to be 
executed in a sequential order. The blocks can be further refined in the form of hierarchical state 
machines through the tool Stateflow, included in Simulink. Simulink supports graphical simulation of 
the diagrams, and Simulink Design Verifier, a package also included in Simulink, allows formal 
verification of properties on the diagrams. Simulink comes with several packages, also for code 
generation from the models. 

● SCADE3 (19.0): SCADE is a model-based development tool that, similarly to Simulink, supports the 
modelling of a system by means of input-output blocks. Differently from Simulink, the execution of 
the blocks is synchronous, i.e., at each execution step, all the blocks perform their computation 
simultaneously. Like in Simulink, the blocks can be further refined with hierarchical state machines, 
and the tool allows simulation and formal verification with SCADE Design Verifier. SCADE also 
comes with several packages, as, e.g., SCADE Architect, which allows the modelling of the system 
architecture in terms of high-level blocks, similarly to what can be done with the SysML/UML 
languages.  

                                                 
1 Atelier B is widely used in the railway context, although it requires ADVANCED competences. Normally, the 
usage of the tools involves formal methods experts -- the Clearsy company (https://www.clearsy.com) offers 
consultancy services for Atelier B.  
2 https://www.mathworks.com/products/simulink.html  
3 http://www.esterel-technologies.com/products/scade-suite/  

https://www.clearsy.com/
https://www.mathworks.com/products/simulink.html
http://www.esterel-technologies.com/products/scade-suite/
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● UPPAAL4 (4.1):  UPPAAL is an integrated tool environment for modeling, validation and verification 
of real-time systems modeled as networks of timed automata, extended with data types. It is 
appropriate for systems that can be modeled as a collection of non-deterministic processes with 
finite control structure and real-valued clocks, communicating through channels or shared variables. 
Typical application areas include real-time controllers and communication protocols, in particular 
those where timing aspects are critical. The tool is developed in collaboration between the 
Department of Information Technology at Uppsala University, Sweden and the Department of 
Computer Science at Aalborg University in Denmark. 

● ProB5 (1.10.2018): ProB is an animator, constraint solver and model checker for the B-Method (see 
the B-Method site of Clearsy - http://www.methode-b.com/en/). It allows fully automatic animation of 
B specifications, and can be used to systematically check a specification for a wide range of errors. 
The constraint-solving capabilities of ProB can also be used for model finding, deadlock checking 
and test-case generation. The B language is rooted in predicate logic, arithmetic and set theory and 
provides support for data structures such as (higher-order) relations, functions and sequences. In 
addition to the B language, ProB also supports Event-B, CSP-M, TLA+, and Z. ProB can be installed 
within Rodin, where it comes with BMotionStudio to easily generate domain specific graphical 
visualizations. (See for an overview of ProB's components). Commercial support is provided by the 
spin-off company Formal Mind (http://formalmind.com) 

● Atelier B6 (4.2.1): Developed by ClearSy, Atelier B is an industrial tool that allows for the operational 
use of the B Method to develop defect-free proven software (formal software). It is used to develop 
safety automatisms for the various subways installed throughout the world by Alstom and Siemens, 
and also for Common Criteria certification and the development of system models by ATMEL and ST 
Microelectronics. Additionally, it has been used in a number of other sectors, such as the automotive 
industry. Atelier B is also used in the aeronautics and aerospace sectors. 

● NuSMV7 (2.6.0): NuSMV is a reimplementation and extension of SMV symbolic model checker, the 
first model checking tool based on Binary Decision Diagrams (BDDs). The tool has been designed 
as an open architecture for model checking. It is aimed at reliable verification of industrially sized 
designs, using as a backend for other verification tools and as a research tool for formal verification 
techniques. NuSMV has been developed as a joint project between ITC-IRST (Istituto Trentino di 
Cultura in Trento, Italy), Carnegie Mellon University, the University of Genoa and the University of 
Trento. Since version 2, it combines BDD-based model checking with SAT-based model checking.  
Its last evolution, called nuXmv, allows the verifications also of infinite-state systems.  

● SPIN8 (6.4.8): SPIN (Simple Promela Interpreter) is an advanced and very efficient tool specifically 
targeted for the verification of multi-threaded software. The tool was developed at Bell Labs in the 
Unix group of the Computing Sciences Research Center, starting in 1980. In April 2002 the tool was 
awarded the ACM System Software Award. The language supported for the system specification is 
called Promela (PROcess MEta LAnguage). 

● UMC9 (4.6): UMC is a verification framework developed at the FM&&T Laboratory of ISTI-CNR for 
the definition, exploration, analysis and model checking of system designs represented as a set of 
communicating (UML) state machines. Its current state is still that of an experimental framework 
mostly used for teaching and research purposes. Even if not ready for real industrial software 
development, it can play a role in disambiguating, animating and verifying early UML based designs. 

 

                                                 
4 http://www.uppaal.org  
5 https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker  
6 https://www.atelierb.eu/en/  
7 http://nusmv.fbk.eu  
8 http://spinroot.com/spin/whatispin.html  
9 http://fmt.isti.cnr.it/umc/V4.6/umc.html  

http://www.uppaal.org/
https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
https://www.atelierb.eu/en/
http://nusmv.fbk.eu/
http://spinroot.com/spin/whatispin.html
http://fmt.isti.cnr.it/umc/V4.6/umc.html
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2.2.2 Modelling of the Moving-block System 

The modelling process for the moving-block system was performed as follows. Three researchers from ISTI-
CNR were appointed to develop the models based on:  

A. the graphical UML model from D2.1 
B. the requirements derived from that model, reported in Sect. 2.1.1 

 
Each researcher independently developed the models for a subset of the tools. The researchers were 
required to interpret the graphical UML model and the requirements, and provide their interpretation using 
the languages of the tools. Furthermore, they were required to explore the capabilities offered by each tool at 
design and formal verification level, as, e.g., to verify certain properties, or to observe the graphical 
simulation capabilities of the tool. The result of this activity is a set of models of the moving-block system, 
together with a set of observations about peculiarities and capabilities of the different tools. The source 
models of the moving-block system can be downloaded from our public repository10: https://goo.gl/rcdVm2 

We do not describe each single model in this section, as all the models follow the moving-block principles 
already described. Instead, in the following section, we present our observations about peculiarities and 
capabilities of the different tools, using excerpts of the developed models as a reference to explain such 
characteristics. 

 

 

3 Discussion on Formal Modelling Techniques and Tools Trial 

 
This section describes the peculiarities of the different methodologies and associated tools, based on 
excerpts of the models developed within this task, and on the experience gained by the researchers through 
the usage and comparison of the different tools. The goal of this section is to highlight how, depending on 
the phase of the development and the verification needs, certain tools may be more appropriate than others.  
 
The information reported below is based on brainstorming performed by the three researchers involved in 
this modelling activity. During the brainstorming, each researcher using a certain tool was required to think 
aloud by answering three main questions, reported below. The other researchers challenged the speaker in 
case of disagreement. 
 
When to use a certain tool/methodology? 
 

● in which phase is it most appropriate? -- early prototyping, detailed design, etc. 
● for which purposes or needs? -- verification of temporal properties, verification of data, etc. 
● for which types of railway systems is it most adequate? Single systems: IXL -- working on tables; 

ATP -- complex control logic; systems-of-systems, with different interacting component (entire 
ERTMS, CBTC) 

 
How does modelling and verification work with the tool/methodology? (based on the lessons learned 
through the moving-block modelling) 
 

● what does a model look like? 
● what does a formula to be verified look like? 
● what does a simulation look like? 

 

                                                 
10 For the SCADE model, we cannot provide the source for licensing reasons. Instead, we provide a video of 
the model. This video was also used in the tool showcase, as the SCADE model was developed by students 
from the University of Florence. 

https://goo.gl/rcdVm2
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What issues should be considered by a user when choosing to use a tool/methodology?  
 

● what are the situations, i.e., systems or phases, for which the tool is not appropriate? 
● what are the potential hurdles that a company should consider if a certain tool is adopted? (e.g, 

steep learning curve, little documentation, etc.) 
● how to address the mentioned issues in practice? (e.g., involvement of a consultancy company in 

case of higher competences required, usage of tools with different verification capabilities) 
 
In the following sections, the different tools are treated in groups, when appropriate. Furthermore, each 
section is structured according to the questions listed above.   
 

3.1 Modelling for Simulation and Code Generation 

Two of the tools considered, namely Simulink and SCADE, are model-based development tools that offer 
graphical modelling and provide powerful simulation capabilities as well as code generation. Given their 
similarities, we discuss these tools together in this section, noting differences when appropriate. 

3.1.1 When to use tools such as Simulink and SCADE? 

Simulink and SCADE are mostly appropriate in two, rather different phases of the development, namely: (1) 
requirements phase, in which system prototypes are developed to support the definition of the 
requirements; (2) detailed design phase, in which the system model shall be close to the final 
implementation.  

Indeed, these tools support simulation in the form of animation of graphical models, which can be useful in 
the initial phases of the development process, to provide first experiments, increase the confidence on the 
initial design, facilitate interaction with the customer, and establish the initial requirements. The simulation 
feature is also useful in the detailed design phase, in that it enables debugging capabilities. Furthermore, for 
the detailed design phase, these tools offer the code generation feature. The code generator of SCADE is 
also certified according to the CENELEC norms, making the tool particularly suitable to be employed for 
detailed design.  

Both Simulink and SCADE are appropriate for modelling high-level system design control logics, with 
different subsystems interacting with each other, as well as single components, when these can be 
represented as state machines. They are not the most appropriate tools if one wishes to target formal 
verification, since the supported modelling languages are quite complex, and verification of models 
developed with these tools tend to incur in state-space explosion problems.  

Both tools are appropriate for users with electronic engineering or software engineering background, while 
formal methods experts may find the tools too weak from the formal verification capabilities standpoint. 
SCADE is particularly suited for people with electronic engineering background, since also the supported 
statechart notation recalls the notation and the philosophy of electronic circuits. Instead, the statecharts 
notation used by Simulink -- and in particular by Stateflow, the Simulink package for state machines 
diagrams --, is more oriented towards computer scientists. 

Finally, these tools are appropriate when a company wishes to have a holistic platform, covering different 
phases of the development -- from prototyping to code to testing--, and having different packages for multiple 
purposes, as, e.g., report generation, model-based testing. It should be noticed that, while SCADE is 
associated to SCADE Architect, which enables the development of the system architecture, in Simulink there 
is no such package for high-level architecture design. This problem can be addressed by creating different 
architectural hierarchies with the Simulink subsystems, i.e., blocks that can contain other blocks. 
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3.1.2 How does modelling and verification work with Simulink and SCADE? 

Modelling with Simulink and SCADE is performed through drag-and-drop of elements from a graphical 
palette, similarly to what a user can do with tools such as Microsoft Visio. Both tools include libraries of pre-
defined elements, which are called “blocks” by Simulink and “operators” by SCADE. Each block/operator is 
basically an input-output box, which perform some operation or implements some state-based function. 
Blocks/operators can be connected to each other to create complex models. The high-level model of the 
moving-block system for Simulink is presented in Figure 4. The first block on the left (in red) is external to 
the system, and models the behaviour of the train, in terms of distance travelled based on a speed value set 
by the user. Instead, the other three blocks model the OBU, the LU and the RBC, respectively. Information is 
exchanged between the blocks through signals, which are graphically represented either as direct links 
between the blocks or through named labels. INPUT can be modified (e.g., the train speed), and OUTPUT 
can be observed directly on the model (e.g., the brake activation value). 

 

Figure 4 Simulink model 
 

Similarly, the high-level model for SCADE is presented in Figure 5. With some graphical differences, the 
models include the same blocks and are conceptually similar. 
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Figure 5 SCADE Model 
Simulation with the tools is performed similarly, and the user can provide input to the modelled system, and 
observe the output. The user can also directly observe the system execution by means of different views. 
For example, as shown in Figure 6, the user can monitor the status of the Internal View of the OBU, and see 
the currently active states in the statechart. As shown in the right part of the picture, in Simulink, the user can 
also look at the contextual view of a certain module, and check the communication between sub-systems, in 
the form of message sequence charts.  

 

Figure 6 Hierarchical statecharts in Stateflow and Message Sequence Charts 

 

Verification with the two tools can be performed by graphically defining properties to be verified, as shown in 
Figure 7. In the figure, the system with its input and output is included in the block of the left-hand side of 
the picture. The external elements on the right side are used to represent the property to be verified. The 
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property in this case can be written as: anytime the timer associated to the OBU exceeds 15 seconds 
(because a new movement authority was not received), the OBU shall activate the brake. Design Verifier 
generates a counter-example in case the property is violated, i.e., a scenario made of a sequence of input 
data that lead to the violation of the property. The user can then simulate the model using the counter-
example as input, observe property violations, and debug the model to solve the problem. 

 

Figure 7 Property to be verified with Simulink Design Verifier 

 

3.1.3 What issues should be considered by a user when choosing Simulink or SCADE? 

The first issue to consider is that these tools, differently from other formal tools, are not open source, and 
have a licensing cost, which varies depending on the number of packages that one wishes to purchase. 
Therefore, the models developed with these tools can be normally read and executed solely by these tools -- 
some porting capabilities are available, but the formats are not open. Hence, if a company invests in these 
tools, and creates artifacts through these tools, creates a dependable business relationship with the tool 
vendors. Furthermore, the investment in terms of cost for the adoption of these tools may not be negligible.  

Simulink and SCADE are similar for the features offered, but the supported languages are radically different 
in terms of semantics. SCADE is based on the synchronous language Lustre, and the state machines 
developed with SCADE evolve simultaneously. Differently, in Simulink each block and each state machine 
executes sequentially, similarly to what occurs with a sequential computer program. Although Simulink 
supports the modelling of different systems interacting with each other, as in the case of our moving-block 
system, the execution of the blocks is not parallel, as the parallelism is only simulated: each block executes 
after the preceding one, where default precedence follows the western reading direction -- left to right, top to 
bottom. 

In practice, with Simulink one can modify a variable, and read the variable with the modified value in the 
same execution cycle, as one can expect in a sequential computer program. With SCADE, instead, a 
variable can be modified, but its new value will be available solely at the next execution cycle: to read a 
variable’s value, one has to use the notation last ‘<variable_name> (indicating the previous value of 
<variable_name>), if the variable is modified somewhere in the model. 

Another issue to consider is that these tools are not particularly suited for formal verification. Hence, if 
powerful verification capabilities are required, other tools should be used. 
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3.2 UML Modelling 

UML statecharts, which describe the dynamic behaviour of a system in the form of a state machine, are often 
considered a reasonable way to communicate the expected behaviour of a system among team partners, 
developers, and assessors. The description of the moving block system included in Deliverable 2.1 (see 
Figure 3) is an example of the use of a UML-aware drawing tool to create pictures that complement a 
textual description of the desired system behaviour. 

3.2.1 When to use UML-based tools? 

The main driving force for using a UML-based tool is the need to have a graphical representation of the 
system behaviour in a format that is not particularly tool dependent and which can be rather easily 
understood by other persons or teams. The UML description of system behaviour is mainly centred on the 
control flow of the system. The data-dependent aspects do not appear in an evident way inside the 
behavioural description of a system as provided by statechart diagrams. By using UML-aware drawing tools 
(e.g. Visual Paradigm online11, Magic Draw12, etc.), it becomes easy to generate a picture that can actually 
be of help in communicating an approximate idea of what is the expected dynamic behaviour of a system.  

By using UML-based frameworks that allow to translate a UML design into an executable program (e.g. IBM 
Rational Rhapsody13, Enterprise Architect14), the user may have the possibility to animate the system 
executions, to exploit model-based testing features of the framework, and finally generate the programming 
code associated to each system component. 

When it comes to verifying overall behavioural properties of the system under development, UML suffers 
from the absence of mature industry-ready formal verification tools. So this choice is probably not the best 
one if some kind of formal verification of the system is actually a major concern. 

3.2.2 How does modelling and verification work with UML? 

In the activity of WP4, being our focus on formal methods, we are not particularly interested in the possible 
use of just graphical or semi-formal UML based tools. In the absence of industry-mature frameworks we 
have experimented the use of an academic UML-based verification framework that is UMC. 
This framework allows the user to describe a system as a collection of communicating state machines 
specified by statecharts, and to animate, and verify properties directly on these UML-based designs.  UMC is 
not a tool for quantitative verification of system properties, therefore the time/probabilistic aspects of the 
system will not be represented, and the focus will be centred on the functional aspects of the system. 

The original WP2 description of the system (as shown in Figure 3) identifies seven functional phases, 
logically connected in sequence, that define the intended behaviour of the system. In particular, in that 
presentation the system has been structured as a single parallel state where each functional phase is 
modelled by its specific concurrent region. Each phase activates the next one through the sending of a 
signal. There is also an external "tick" event triggering the beginning of a new cycle.  The above structure 
can be directly encoded in UMC (see umc-WP2orig.txt in our public repository https://goo.gl/rcdVm2) as a 
single state machine definition, and the overall system behaviour can be analysed by model checking of 
CTL-like temporal logic formulas. 

 

 

                                                 
11 https://online.visual-paradigm.com 
12 https://www.nomagic.com/products/magicdraw 
13 https://www.ibm.com/us-en/marketplace/rational-rhapsody 
14 https://sparxsystems.com/products/ea/ 

https://goo.gl/rcdVm2
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We can show, for example, that the system design satisfies a rich set of properties like: 

- as soon as the OBU executes 10 cycles without receiving an MA the OBU moves to the STOPPED 
state; 

- every system evolution path from a non-stopped train status eventually leads either to the stopped 
status or to the handling of a MA; 

- there is a possible system evolution path in which the OBU infinitely receives sequences of MA; 

- there are no deadlocks (any final state is the state in which the train is stopped). 

The UML design of the Moving Block modelled in this way reflects rather well the desired requirements under 
the implicit assumption that the activity of the whole system cycle is completely exhausted by the time a new 
"tick" event arrives.  If this assumption were not true, we would have a parallel system with several 
concurrent regions progressing at the same time, and this would lead to ambiguities and uncertainties of the 
really intended behaviour. 

 
Another limit of this original model is that RBC and OBU are considered as two synchronous regions of the 
same system state, i.e. performing the same cycles in a fully synchronous way, while in reality these two 
components are two separate (and remote) entities, that may have two cycles of the same duration, but 
which are not necessarily perfectly synchronized. To overcome these limits we have generated a new UML 
design (see umc-WP2-OBUseq+RBCseq.txt in our repository https://goo.gl/rcdVm2) that, still preserving the 
functional description of the system in different phases, does not have the above mentioned drawbacks. 

 
In this second case we model RBC and OBU as two distinct (but communicating) objects. For simplicity, the 
LU component is in this case just considered an internal activity of the OBU component. 

 
Each object is described by a sequential statechart structured in sequential phases, as shown, for the case 
of the OBU component, in Figure 8. This new model can be proved to satisfy the properties mentioned 
above of the original model, however its behaviour differs in some other aspects.  For example, it is now also 
possible that during one OBU cycle a position report is sent to the RBC, while the corresponding MA 
message is received during the next cycle.  Moreover, it is now possible that during one OBU cycle the train 
has to handle two incoming MA messages (one arrived from the PR sent during the previous cycle, and one 
as response to a new PR freshly generated and sent in this same cycle).  This situation will no longer be 
present in the revised version of the Moving Block system, because in this new version Position Reports are 
no longer sent by the OBU at each cycle, but only after a certain minimal delay. The current model continues 
to rely on the assumption that each OBU and RBC cycle lasts less than the planned duration of the cycle 
itself. This assumption is released in the revised version, in which it is explicitly required that when an OBU 
(see umc-WP43-newOBU.txt in our repository https://goo.gl/rcdVm2) or RBC cycle lasts more than the 
expected cycle duration a fatal error is generated. 

https://goo.gl/rcdVm2
https://goo.gl/rcdVm2
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Figure 8 Sequential OBU Component 
 

3.2.3 What issues should be considered by a user when choosing UML-based tools? 

A first well-known difficulty is the absence of a really rigorous semantics of the UML notation, which currently 
contains several aspects described by the official UML specification in an ambiguous way. Another difficulty 
caused by the high level of freedom left to the implementation, is deciding what will be the effective 
behaviour of a system with respect to a rich set of implementation-dependent aspects. A third difficulty is 
that, while the behaviour of a single system component describing a state machine is still reasonably well 



 
Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 
Deliverable Title 

Version 

D4.2 
Preliminary Trial Report 
1.1 – 27/11/2018 

Page 21 of 39 

 

covered by the UML standard, the description of behaviour resulting from the parallel composition of these 
components, and the way in which the communications among them occurs, is left almost completely 
undefined. 

Clearly, if some UML-aware statechart drawing-only tool is used, the fact of not being able to 
animate/simulate/verify the design prevents the user from having a precise feedback on the correctness of 
the drawing with respect to the original user’s idea.  By using some proprietary UML-based framework that 
allows to translate a UML design into some executable program, the user may achieve a much greater 
confidence of the correctness of the design, possibly also exploiting model-based testing features of the 
framework, but in this way the design may actually hide many implementation-dependent choices that might 
be easily misunderstood when that design is observed in a different context.  

The use of UML-based formal verification and analysis tools like UMC, that allow to describe a system as a 
set of concurrent state machines with a precise semantics, simulate the possible system evolutions, and 
verify temporal properties on the dynamic behaviour of the system, might greatly increase the level of 
confidence of the overall correctness of the abstract UML design. But the issues related to the presence of 
some platform-specific implementation dependencies and the issues related to the correctness of the actual 
code eventually generated from the original design still remain unresolved. Moreover, tools of this kind, that 
are being developed in academic contexts, do not have the maturity for being included into an industrial 
development process. 

3.3 Modelling Real-time and Probabilistic Aspects 

The description of the moving block system included in Deliverable 2.1 (see Figure 3) makes use a semi-
formal UML State Machine dialect called Real-Time UML (RT UML) that allows to specify both real-time and 
probabilistic aspects.  
 

In particular, the semi-formal model in Figure 3 specifies timed events denoted as RTat of stereotype 
<<RTevent>>, probabilistic delayed events RTduration of stereotype <<RTdelay>>, and probabilistic events 
<<Pastep>> with probability weight Paprob. These real-time and probabilistic aspects have been used to 
model both failures in communications, and delays in transmitting messages and elaborating them.   
However, such a semi-formal model lacks a really precise semantics and hence it is not directly amenable to 
formal analysis and verification, and even less to automatic code generation.   

 
Formalisms and tools (like UPPAAL) for specifying and analysing these types of specifications are useful 
because they primitively allow to model both probabilistic and real-time aspects, making the formal model 
ready for automatic analysis without further codifications that would tamper productivity and simplicity of the 
model. 

3.3.1 When to use a tool that supports real-time and probabilistic aspects? 

Clearly, a time/probabilistic aspects-oriented tool is useful when these aspects play an important role in the 
definition of the expected system properties. It is also reasonable to imagine that, given a design specified in 
a functional way with other approaches, fragments of it are also modelled with tools like UPPAAL for a more 
specific time-oriented verification. In our specific case of the trial moving block application, we have several 
requirements expressed under the form of time assumptions (e.g., OBU cycle of 500 ms, the train must stop 
if no MA is received for 15 seconds), however these assumptions are very simple and can be easily 
approximated without a rigorous modelling of the flow of time (e.g., the train must stop if no MA is received 
for 20 consecutive OBU cycles).  

Tools like UPPAAL would allow to better understand the underlying time/probabilistic aspects, allowing to 
analyse properties (when all the relevant number are provided) such has:  
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- what is the probability for the train to enter in the Stopped state within 10 seconds? 

- if the OBU-LU communications delays are in the range 10-100 ms, what is a reasonable requirement for 
the response time of LU to guarantee that the OBU cycle of 500 ms is never preempted? 

3.3.2 How does modelling and verification works with UPPAAL? 

UPPAAL allows to describe a system as a set of concurrent Timed automata. These are drawn graphically 
as simple statecharts, and interact either through the exchange of synchronous (not buffered) messages or 
through shared memory. Timed automata combine discrete systems with real-valued variables that evolve 
during the time a system spends in a state. These variables, called clocks, evolve uniformly and they can be 
used for guarding transitions between states and they can be used to specify invariant properties. 

UPPAAL SMC is an extension of UPPAAL that allows to express both stochastic and non-linear dynamic 
features, by adopting a stochastic and hybrid extension of timed automata. Stochastic timed automata 
include also probabilistic transitions and delays. 

Figure 9 shows the formalization of the Moving Block trial application (from the original WP2 design). The 
explicit numbers included in the specification are just examples of possible values. 

Verification allows to verify, among others, safety properties and reachability properties. In addition to 
standard model-checking techniques for properties such as reachability or deadlock-freedom, in UPPAAL  it 
is possible to evaluate the probability that a random run of a network M satisfies a property ϕ in a given 
amount of time. 
 

UPPAAL SMC uses Statistical Model Checking (SMC) to evaluate probabilistic properties of interest. SMC is 
concerned with running a sufficient number of (probabilistic) simulations of a system model to obtain 
statistical evidence (with a predefined level of statistical confidence) of the quantitative properties to be 
checked.  
 

SMC offers advantages over exhaustive (probabilistic) model checking. Most importantly: SMC scales better, 
since there is no need to generate and possibly explore the full state space of the model under scrutiny, thus 
avoiding the combinatorial state-space explosion problem typical of model checking, and the required 
simulations can trivially be distributed and run in parallel. This comes at a price: contrary to (probabilistic) 
model checking, exact results (with 100% confidence) are out of the question.  

A highly appreciated feature of UPPAAL is the possibility to interactively simulate possible paths of 
executions and visualise them in the form of message sequence charts. 
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Figure 9 Stochastic timed automata formalisation of the moving-block system 

 

3.3.3 What issues should be considered by a user when choosing to use UPPAAL? 

While standard functional analysis methods are a subject studied for decades and for which several industry-
mature tools (such as model checkers) exist, tools oriented to SMC, as in our case, are very recent. For 
example, the first version of UPPAAL SMC has been released in 2014. As in the case of classical model 
checkers, certification of UPPAAL SMC for the development of critical software is not available. 

Several problems, which are known to be decidable in discrete systems, cease to be so in real-time 
probabilistic frameworks. Hence the set of properties on which analysis can be carried out is more limited. 
Since this is a rather new and hot topic in the research community, the technological transfer and the 
adoption to industry is still limited. Indeed, new theories are being developed nowadays, which use results 
from statistics as well as machine learning, and it is expected that in the future more powerful tools will 
become available. 

Moreover, even if the formalism is closer to state machines used in tools such as Simulink, a knowledge of 
the underlying mathematical formalisms used to specify both the model and the properties as well as to 
analyse the obtained results is still required. Therefore a certain specialisation of developers, engineers and 
other users on real-time stochastic model-based analysis is needed. 
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3.4 Modelling with Event B State Machines (Refinements) 

A formal design methodology, that appears to be quite widely used in the railway context (see Deliverable 
D4.1 on literature and tools survey), is the design methodology based on State Machines as described by 
the Event B methodology.  The B/Event B method appear to be a very productive approach, that has led to 
the development of a rich ecosystem of tools and frameworks. E.g. Rodin15, ProB, Atelier B, are all examples 
of coordinated verification environments supporting the formal analysis and development of Event B 
specifications. 

The characteristics of this approach is that a system is described as a sequential (possibly non-deterministic) 
state machine, whose evolutions are triggered by operations enabled by specific local state machine 
conditions, but originated from the external environment. The specification of a state machine includes the 
definition of the set of local variables, a set of state-based invariant properties that are required to hold 
throughout the machine’s evolutions, and the specification of the set operations that under specific 
conditions are allowed to modify the value of the local variables of the machine. 

With this kind of methodology three different kinds of formal verification can be carried out: 

1) The specified set of invariants are checked to remain satisfied throughout the machine’s evolutions (i.e., 
no operation ever causes the violation of an invariant). 

2) A machine definition can be refined by adding more implementation-dependent details, and the refined 
one can be proved to be correct (i.e., still satisfying the invariants of the higher level machine). This may lead 
to a sequence of refinements that eventually reaches a level very near to final programming code. 

3) Behavioural properties (expressed in linear- or branching-time logics) can be stated and verified by means 
of model checking. 

This methodology is particularly well suited for data-oriented systems, in which the consistency and 
correctness of the data (status of the local variables of the state machine) is of primary importance. Indeed, 
the formal modelling of interlocking system are among the most common applications of this methodology. 

This approach is also well suited for modelling a system "out of the loop", i.e., as a single component 
interacting with a generic "external environment", whose safety can be guaranteed by the verification that for 
any possible external interaction the validity of the machine invariant properties always remain satisfied. 

This approach instead does not fit well the need of modelling a system composed by several concurrent 
components interacting through events, signals, messages. 

The moving block design which we are interested in modelling is still a high-level design that reflects more 
the designer’s requirements than the designer’s detailed specifications to be used for the actual coding, and 
is not particularly data oriented. Therefore, we are more interested in the third kind of formal verification of 
the three mentioned above.  We have found that the tool that fits better this need is the ProB tool. Atelier B 
has also been considered during the tool trial and will be discussed afterwards. 

3.4.1 When to use tools such as ProB? 

The main characteristics of ProB is that it allows to observe, simulate, analyse the dynamic behaviour of a 
state machine as described by the system evolutions graph (where each step corresponds to a state 

                                                 
15 http://www.event-b.org 
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transformation triggered by external event). Therefore, it fits very well the initial needs of observing the 
behaviour of a prototypical design, as well as the need of proving dynamic properties of the possible 
evolutions of a more consolidated design. 

3.4.2 How does modelling and verification work with ProB? 

We have developed three examples of Event B models for the moving block case study.  A first one (see 
prob_MB_WP2.mch in our repository https://goo.gl/rcdVm2) directly reflects the original WP2 design with its 
known limits. A second one (see prob-OBU.mch) describes just the sequential OBU component (the same 
described in the UML specification of Figure 8) and its possible interactions with an external environment 
that replies to sending of position reports with the return of MA messages). A third one (see prob-
OBU+RBC.mch) models the composition of the OBU component and the RBC component (that 
communicate through global variables) merging them inside a single state machine. 

Even if the ProB tool is provided with a nice graphical user interface, the specification itself is in plain textual 
form.  Figure 10 shows a fragment of the OBU specification as a ProB state machine. In terms of 
behavioural properties, we can prove by model checking that the prob-OBU.mch specification satisfies the 
same sample list of properties verified on the UML model.  

Figure 11 shows the Check LTL/CTL Assertion window that is opened when we want to verify some 
temporal property on the model. We can see how the tool allows the verification of all the LTL or CTL 
assertions included in the model specification, or the introduction and verification of new temporal assertions. 
A green flag notifies the validity of the formula. When red, clicking over a flag results in the display of a 
counterexample for that formula. 

The Prob tool seems to be a rather industry-mature tool, well integrated with other verification / analysis / 
visualisation tools. Beyond the model checking of LTL/CTL properties it allows the verification of the absence 
of invariant violations or deadlocks; it allows to support some kind of model-based testing and produces 
abstract coverage data as the result of analysis and exploration of the system.  System evolutions can easily 
be simulated step by step, and the generated state space (in its entirety or some projection of it) can be 
graphically visualised. 

Moreover, a ProB specification might be exported (after some rewriting) to other tools of the Event B family, 
like Atelier B that provides, beyond refinement and invariant verification functionalities, also actual code 
generation facilities. 

3.4.3 What issues should be considered by a user when choosing ProB? 

The strong point of ProB is its capability of performing model checking of LTL or CTL formulas on the Event 
B state machine under design. The efficiency of the built in model-checking capabilities are however not 
comparable to those of more specific verification engines like those behind SPIN, SMV, CADP, or FDR.  
ProB is therefore a good choice only if the system is not particularly big. This is somewhat coherent with the 
expected use of the Event B method to model single system components, and not in large architectures. 

ProB is however a very flexible tool, that allows to export the developed design to other tools of the Event B 
ecosystem like the Rodin and Atelier B tools.  Moreover, ProB also allows to model check (not too complex) 
specifications imported by other frameworks like SPIN, TLA+ or FDR, providing additional verification 
capabilities with respect to those provided by the corresponding original tools. 

https://goo.gl/rcdVm2
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Figure 10 A fragment of the ProB OBU state machine 
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Figure 11 Properties in ProB 

 

3.4.4 When to use tools such as Atelier B? 

Atelier B is an interactive theorem prover for assessing the preservation of structural properties (in the form 
of invariants) on the status of an Event B model. This approach is particularly useful when a state machine 
has a complex internal status, of which the possibility to guarantee the preservation of consistency is of 
primary importance.  In our trial case study the design under examination does not have this characteristic, 
since the local machine status is essentially constituted by a "counter" variable (the maximum number of 
cycles allowed to be executed before stopping the train in absence of an MA message) whose value should 
invariantly remain in the range 0..20. Nevertheless, in the railway context several examples can be found for 
which this approach might be useful (e.g., interlocking systems). Given that it belongs to the B method 
suites, it can be applied in the whole life-cycle of software.  

The strongest point of using a theorem prover with respect to, for example, a model checker such as ProB, is 
the possibility of verifying properties for systems with a potentially infinite number of states. Indeed, in this 
case an exhaustive exploration of the whole state space of a system would not terminate. However, thanks 
to theorem proving, it is still possible to prove certain requirements using, e.g., induction or other proof 
techniques.  

On the other side, proving a theorem is not a completely automatic procedure and it requires several 
interactions with the user, who is in charge of selecting the specific strategy to prove a certain result.  
Nevertheless, Atelier B is equipped with a feature for trying to automatically prove certain simple properties, 
which does not always succeed but can often be helpful. 

When an Event B model is refined, Atelier B automatically generates proof obligations to be discharged by 
proving them. This is crucial to verify that the new model is indeed a correct refinement of the previous one. 
This feature is of help for driving developers in creating and proving correct refinements. Such proof 
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obligations mainly consist in proofs of preservation of invariants by refinement, and that pre and post 
conditions of events are correctly refined. 

The language of Atelier B uses mathematical objects, as for example sets, existential or universal 
quantifiers, data types, relations, functions, etc. This aspect has great advantages when the system to be 
modelled and verified can be naturally rendered as a set of logical connectives, as is generally the case for 
interlocking tables. 

Of course, one of the strongest point of Atelier B is the integration in the whole B method and its previous 
notorious applications in the railway domain, with a supporting community and a company who offers 
support to developers at various levels. 

3.4.5 How does verification work with Atelier B? 

During the tool trial, Atelier B has been used inside the Rodin environment, displayed in Figure 12. 

 

Figure 12 Atelier B within the Rodin environment 

 

When interacting with the theorem prover, several proof obligations to be discharged are displayed on the 
right column. In the bottom center panel the proof control allows the user to apply different strategies for 
trying to prove the current proof obligation.  

As an example, it is possible to select and apply previously proved properties, to introduce new hypotheses, 
that are displayed in the upper central panel, to instantiate an existential quantifier, to divide by cases, to try 
to automatically prove the current proof obligation, and others. The goal to be reached is displayed in the 
middle center part. The left hand-side panel shows the current proof tree, i.e., the steps of the proof that 
have been taken so far.   
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Fully explaining how theorem proving works is out of the scope of this document. However, it generally must 
be considered that performing theorem proving requires some skills and previous experience with such 
techniques. 

3.4.6 What issues should be considered by a user when choosing Atelier B? 

When planning to integrate Atelier B in the development process, a first issue to consider is its strong 
mathematical foundation in theorem-proving techniques. Hence, the cost of training developers who are not 
familiar with such techniques is non-negligible and must be taken into account.  

Contrary to the case of model checking, it is not a completely automatic verification technique, hence it 
requires more human effort and expertise. Moreover, Atelier B is not well-suited when properties related to 
the temporal evolution of a system have to be analysed, for example through temporal logics. Indeed, in this 
case a model checker like ProB is suggested. 

Furthermore, when non-functional aspects such as for example reliability or availability have to be studied, 
Atelier B might not be the best option. Indeed, quantitative aspects such as real-time and probabilities are 
not provided off-the-shelf in Atelier B, if compared to other tools that instead primitively provide such 
capabilities.  

Finally, from the Event B language Atelier B inherits difficulties in modelling concurrent systems and 
interacting components. 

 

3.5 Other Model-Checking Approaches to deal with State Explosion  

The literature survey conducted as part of Task 4.1 has revealed uses of the SPIN and SMV frameworks 
(NuSMV, nuXmv) for the verification of systems in the railway context. These are command-line tools which 
are also widely known within the formal method community. 

3.5.1 When to use tools such as SPIN or SMV? 

Both SPIN and SMV can better be seen as very powerful model-checking engines, that exploit state-of-the-
art techniques for the reduction or the control of the state-space explosion problem. A SPIN or SMV 
specification, however, can hardly be seen as a friendly notation for the unambiguous sharing of a design 
among different stakeholders, neither can it be seen as a usable document that can be passed to software 
developers for its actual refinement into final executable code. Nevertheless, sometimes a translation of a 
system design into Promela (the specification language of SPIN) or SMV can be an effective way to verify 
properties of the initial design.  For example, one of the most interesting uses of SMV is the verification of 
hardware designs. Indeed, in this case the initial specification is likely a graphical design, and the final 
product a printed circuit, nevertheless the possibility of modelling the design and proving its correctness 
before production could be of paramount importance. 

3.5.2 How does modelling and verification work with SPIN and SMV? 

Both tools take as input a textual description of the system in their own language and allow to verify formulas 
expressed in a temporal logic (LTL for SPIN, LTL and CTL for SMV). SPIN allows to design a system as a 
collection of non-deterministic sequential asynchronous processes that interact through buffered message 
passing. SMV instead sees a model as a global state machine whose non-deterministic evolutions can be 
defined using a data flow or a transition-oriented approach. In SMV a system can be decomposed into a set 
of fully synchronous submachines. Examples of coding of the Moving Block system for both frameworks can 
be found in SMV_MB.txt and SPIN_MB.txt (in our repository https://goo.gl/rcdVm2) 

https://goo.gl/rcdVm2
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3.5.3 What issues should be considered by a user when choosing tools line SPIN or SMV? 

When the system under investigation becomes rather big, the effective use of the tools requires a deep 
experienced knowledge of the verification framework. The choice of the appropriate execution options may 
become essential for the success of the verification task. 

3.6 Modelling for System Wide Analysis (Systems in the Large) 

In our specific case our reference model is composed of just three components. We might sometimes be 
interested in checking the behaviour of richer systems, e.g., with more OBUs and more interacting RBCs.  

In this case, a compositional approach that allows to verify the properties of a component by composing it in 
parallel with a (minimised) abstraction of all the other components would be very useful to avoid the 
problems of state explosion usually arising when we have a system composed by many concurrent objects.  

In order to support this compositional approach to model checking, one needs an underlying specification 
language with a solid mathematical definition and upon which rigorous theories of equivalence of behaviours 
can be applied. All the tools that support this approach are indeed based on specification languages formally 
defined as process algebras. In the survey performed as part of Task 4.1 and 4.2 we have mentioned and 
described three such frameworks, namely, CADP16, mCRL217, and FDR418.  As part of Task 4.3, even if with 
the current architectural design we are not compelled to do so, we have experimented the modelling of our 
system composed by one OBU and one RBC also with two of these specification languages (LNT for CADP 
and CSP for FDR4). Given that the languages used by these tools required advanced competences, these 
tools were not subject to the showcase and tool usability assessment presented in Sect. 4. We however 
consider it useful to discuss the applicability of these tools, for the sake of completeness. 

3.6.1 When to use tools such as CADP or FDR4? 

The reasons for using these tools for the specification and the verification of a system are twofold. From one 
side we can rely on a specification language that has a formally defined (tool-independent) semantics. This 
allows to have specifications that can be shared among the various stakeholders, being certain of their 
unambiguous meaning. On the other side, the theories that have been developed for such languages allow 
to fully exploit the above mentioned compositional approach to systems-in-the-large verification. A typical 
exemplary use of these approaches is the formalisation of communication protocols. Indeed, in this case a 
rigorous mathematical specification, whose correctness can be formally verified and that can be used as a 
reference by different producers for the development of mutually compatible products, is an important 
starting point for the development of correct working software, even if the final software products are actual 
separately developed by the various producers according to their own software development process. 

3.6.2 How does modelling and verification work with CADP or FDR4? 

All the mentioned specification languages rely on a textual description of the system. The single components 
are defined by sequential processes (with no shared memory), these processes are composed in parallel 
with appropriate operators and synchronised through the execution of actions. In our case we have that the 
communications between OBU and RBC logically behave as read/write operations upon one position re-
writable buffer. While in the case of UML these buffers were implicitly provided by the language (events 
queue) or directly mapped into memory locations (Event B), in the case of process algebras these buffers 
must be explicitly encoded as additional system components (therefore their precise semantics becomes 
explicit, and not implementation-dependent as in the case of UML).  Examples of the resulting specifications 
can be found in the models cadp-MB.lnt and fdr4-MB-WP2.txt reported in our repository 
https://goo.gl/rcdVm2. In the case of CADP the properties to be verified can be expressed in a quite powerful 

                                                 
16 https://cadp.inria.fr/ 
17 https://www.mcrl2.org/ 
18 https://www.cs.ox.ac.uk/projects/fdr/ 

https://goo.gl/rcdVm2
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branching-time logic (MCL). In the case of FDR4 the properties to be verified must be expressed as 
refinement assertions. 

3.6.3 What issues should be considered by a user when choosing CADP or FDR4? 

We remember that the system specification is in this case provided in textual format, and this may 
sometimes appear less intuitive or user friendly than a drawing (at least for very small systems). Moreover, in 
order to be able to extract the full power of these tools, a certain degree of competence in theoretical aspects 
of formal verification is needed.  Finally, the issue of translating a system specification into actually 
executable, understandable and verifiable code is not generally taken into considerations by these 
frameworks.  In conclusion, these tools and approaches are particularly useful in case one needs a 
mathematically precise specification to be shared, verified and agreed, among the interested stakeholders, 
and when such a specification involves the presence of several independent interacting components. 

 

4 Tool Usability Assessment 

4.1 Methodology for Usability Evaluation 

This section outlines the methodology adopted for the usability evaluation of the tools performed by railway 
experts from the SIRTI company. First, a set of models of the moving-block system was developed using 8 
different formal and semi-formal tools, as explained in Sect. 2. The models were used to showcase the 
different tools at SIRTI and evaluate their usability from the point of view of railway experts.  
 
A usability assessment in which the experts would directly interact with the tools was not considered 
reasonable, due to the skills required to master the tools, and to time constraints. Therefore, 3 researchers 
from CNR showed the different characteristics of the tools in a three-hours meeting with 9 railway experts 
from SIRTI, using the moving-block system as a case study. The researchers asked the railway experts to 
evaluate the usability of each tool based on their impression. The meeting was performed as follows: 
 

1. Introduction: an introduction was given to the main moving-block components and principles. Part 
of the participants was already confident with the moving-block model developed within D2.1. This 
introduction served to provide all the participants a uniform perspective on the system that they were 
going to see modelled. 

2. Tool Showcase: each of the 8 tools was presented live by a researcher in a 15 minutes 
presentation, covering the following aspects: 

○ General structure of the tool: the presenter opens the tool, and provides a description of the 
graphical user interface (if available); 

○ Elements of the model: the presenter opens the model, describes its architecture, and 
navigates the model; 

○ Elements of the language: minimal description of the modelling language constructs, based 
on the model shown; 

○ Simulation features: a guided simulation is performed (if supported by the tool); 
○ Verification features: description of the language used for formal verification, and 

presentation of a formal verification session with counter-example (if supported by the tool). 
3. Usability Evaluation: after the presentation of each tool, a questionnaire is provided to perform the 

evaluation. The questionnaire is described below. 
4. Wrap-up and Discussion: a general discussion is performed between the participants. 

 
To evaluate the usability of the tool, we resort to use a widely adopted usability questionnaire, namely, the 
System Usability Scale (SUS), developed by Brooke [Bro96]. The questionnaire was submitted to railway 
experts, who evaluated the tools based on a brief showcase. Some questions from the original SUS need to 
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be tailored to the specific context of our evaluation. The adapted questionnaire submitted to railway experts 
is as follows: 
 
Railway Experts SUS Questionnaire 
 

1. I think that I would like to use this tool frequently. 
2. I found the tool unnecessarily complex. 
3. I thought the tool was easy to use. 
4. I think that I would need the support of a technical person to be able to use this tool. 
5. I found the various functions in this tool were well integrated. 
6. I thought there was too much inconsistency in this tool. 
7. I would imagine that most people with industrial railway background would learn to use this tool very 

quickly. 
8. I imagine that the tool would be very cumbersome to use. 
9. I imagine that I would feel very confident using the tool. 
10. I imagine I would need to learn a lot of things before I could get going with this tool. 

 
 
Each respondent was required to give an answer in a 5-points Likert Scale, where 0 = Completely Disagree; 
1 = Partially Disagree; 2 = Undecided; 3 = Partially Agree; 4 = Agree.  
 
Computing the SUS score: To calculate the SUS score, first sum the score contributions from each item. 
Each item's score contribution will range from 0 to 4. For items 1,3,5,7,and 9 the score contribution is the 
scale position minus 1. For items 2,4,6,8 and 10, the contribution is 5 minus the scale position. Multiply the 
sum of the scores by 2.5 to obtain the overall value of SUS.  

Overall, the SUS Score varies between 0 and 100, with the following interpretations for the scores, based on 
the work of Bangor et al. [Ban08]: 

100 = Best Imaginable 

85 = Excellent 

73 = Good 

52 = OK 

39 = Poor 

25 = Worst Imaginable 
 

4.2 Results and Discussion 

This section reports the results of the usability evaluation activity, and discusses its main outcomes, based 
on statistical data extracted from the SUS Questionnaire, and based on the final discussion with the 
participants. 
  
Figure 1 presents the results of the SUS questionnaire based on the answers of the railway experts. We see 
that the tools that were considered most usable are Simulink (SUS Score = 76.38), followed by SCADE 
(69.16). These are model-based development tools, with appealing and effective graphical interfaces, and 
powerful languages, and powerful simulation capabilities. However, these are also tools that have limited 
support for formal verification. Indeed, while they allow complex modelling, and include Simulink Design 
Verifier and SCADE Design Verifier as verification packages, these packages do not support verification of 
highly complex models. 
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The two model-based development tools are followed by three other tools with quite powerful graphical user 
interface, but supporting widely different capabilities, namely ProB (SUS Score = 62.2), UPPAAL (61.7) and 
UMC (57.2). ProB and UMC allow the user to model in textual form, but present the results of the simulation 
also in graphical form. Instead, the UPPAAL modelling language is entirely graphical, and presents a 
graphical simulation style that recalls the message sequence charts, which are well known by railway 
practitioners.  
 
SPIN (SUS Score = 56.9), Atelier B (45.5) and nuXmv (36.6), with some differences, are considered among 
the least usable tools. Although SPIN is a command line tool, without a graphical user interface, its score are 
higher than Atelier B. This can be explained considering the following observations: (a) SPIN uses a 
modelling language that is very similar to the C language, and therefore was considered familiar by the 
participants, who, in turn, gave higher scores; (b) Atelier B uses a refinement-based approach, which 
requires advanced skills to be understood and mastered, and it is not intuitive for railway practitioners.  
 
When computing the average SUS Score, we obtain 58.22, which is between OK and Good. Hence, overall, 
the general usability of the presented tools can be considered acceptable. However, none of the tool was 
considered “Excellent” or “Best Imaginable” from the point of view of the railway experts. Although the 
presence of a powerful graphical user interface with simulation capabilities can be considered a key feature 
for the usability of the tools, as for Simulink and SCADE, it should be considered that a textual modelling 
language may be easier to edit and maintain. Further studies are needed to understand which are the 
specific peculiarities that would improve the usability of existing tools. 

 
Figure 13 Results of the Usability Assessment 

 
 

4.3 Threats to Validity 

The results of this evaluation should be considered with care, as they suffer from a set of threats to validity, 
which are summarised in the following, according to the guidelines of Runeson and Höst for reporting case 
studies in software engineering [RH09].  

Construct Validity. The tool adopted to evaluate usability, i.e., the SUS questionnaire, is widely used and 
has been proven effective in several works [Ban08]. On the other hand, the presented usability evaluation is 
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based on a showcase of tools performed by researchers, and hence the railway experts did not actually use 
the tools. Usability is therefore evaluated in an indirect manner, and different results may be obtained with a 
direct evaluation by railway experts.  

Internal Validity. The tools were showcased by researchers who could have biased the audience towards a 
certain tool, based on their preferences. To mitigate this threat, before the evaluation the researchers 
rehearsed the tool showcase, with the participation of an external researchers, provided mutual 
recommendations, and established a time limit for each tool. Therefore, we argue that the tools were 
presented in a quite uniform manner. An exception is SCADE, which was presented through a video, instead 
of a live presentation, due licensing rights. Another issue is related to the number of subjects involved, i.e., 9, 
which may be regarded as limited sample size. However, it has been shown that a group of 10 users can 
identify 80% of the usability problems [HS10]. Therefore, we argue that, although limited, the sample size is 
in line with the samples normally used in usability testing. 

External Validity. The evaluation involved railway experts with different roles, i.e., designers, developers, 
testers and managers, and with different degrees of experience in railways, although generally more than 10 
years. This covers a large spectrum of perspectives. On the other hand, the participants were all from the 
same railway company, and this may limit the results to the specific peculiarity of the company. However, it is 
worth noticing that railway companies follow standardised processes, and, in addition, railway products are 
also well-established and even standardised, in many cases (e.g., CBTC, ERTMS). Therefore, we argue that 
the perspectives of different railway companies may be similar to each other, thus suggesting some degree 
of external validity of our results.   

 

5 Moving Block Requirements Consolidation and Refinement 

5.1 Methodology for Requirements Consolidation 

This section describes the process followed for requirements consolidation, which has followed three parallel 
tasks: 
 

- Automated Requirements Analysis: natural language processing (NLP) techniques have been used 
to analyse the requirements and automatically identify defects; 
 

- Careful review of the model presented in D2.1, also with help of modelling tools, and its impact on 
requirements: this task consisted on visual inspection, modelling and brainstorming among the 
participants to incrementally consolidate the requirements towards a final version; 

 
- Comparison with Hazard Analysis results as reported in Deliverable D2.2: this task consisted in the 

inspection of the hazard analysis entries to find aspects that were not considered in the 
requirements.  
 

5.2 Automated Requirements Analysis 

This section describes the activity performed to automatically analyse the requirements by means of NLP 
techniques.  

5.2.1 NLP techniques for Requirements Analysis and QuARS. 

           
Requirements are an abstract description of the system needs that are often open to different interpretations 
[FDE17]. This openness is emphasized by the use of Natural Language (NL), which is intrinsically 
ambiguous, even though it is commonly used to express requirements. Indeed, NL is the most widely used 
communication code, since it easily supports the exchange of knowledge among different stakeholders with 
heterogeneous backgrounds and skills. As the requirements process progresses, requirements are expected 
to be sufficiently clear to be interpreted in an unequivocal way by the interested stakeholders [FDE17]. 
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A solution found within the RE community is to employ NLP tools that make the editors aware of the 
ambiguity in their requirements. Ambiguities normally cause inconsistencies between the expectation of the 
customer and the product developed, and possibly lead to undesirable reworks on the artifacts. 
 
QuARS was introduced as an automatic analyzer of requirement documents [GLT05]. QuARS performs an 
initial parsing of NL requirements for automatic detection of potential linguistic defects that can determine 
ambiguity problems impacting the following development stages. QuARS performs a linguistic analysis of a 
requirements document in plain text format and points out the sentences that are defective according to the 
expressiveness quality model described in [BBG06]. The defect identification process is split in two parts: (i) 
the "lexical analysis" capturing optionality, subjectivity, vagueness, multiplicity and weakness defects, by 
identifying candidate defective words that are identified into a corresponding set of dictionaries; and (ii) the 
"syntactical analysis" capturing implicitness and under-specification defects. In the same way, detected 
defects may however be false defects. 
      

5.2.2 Results obtained with the analysis of the initial requirements 

 
Applying QUARS to the requirements listed in Sect. 2.1.1, after an inspection to remove false positives 
(detected defects that can actually be interpreted without any ambiguity), we remain with the following 
defects: 
 
------------- QuARS [Lexical] multiplicity ANALYSIS ------------- 
The requirement: 
 
each phase is independent from the others, and each phase does not suspend itself based on the status of 
the following one 
 
contains a multiple sentence: more than one subject 
 
------------- QuARS [Lexical] weakness ANALYSIS ------------- 
The requirement: 
 
the buffer can be overwritten by the phase which writes on the buffer 
 
is defective because it contains the wording:  can 
 
The first defective requirement exhibits two sentences, the first of which is actually redundant, since it does 
not give useful information on the actual operational meaning of the phases.  
 
The second defective requirement is an ambiguous sentence that does not specify whether the buffer must 
be overwritten, or under some (unspecified condition) it might be not. 
 
In both cases, it has been recognised that these sentences have been no more considered as functional 
requirements, and have been moved to a specific section of the requirement document, devoted to 
“Architectural Notes”. 
 

5.2.3 Analysis of the final requirements 

 
The analysis has been repeated on the revised requirements, before their final consolidation, aiding the 
correction of the precise expression of requirements. The consolidated requirements presented in Appendix 
A have undergone a final analysis with QuARS that, after ignoring false positives, has revealed no residual 
defects. 
 

5.3 Moving-block Requirements and Model Refinement 

While the analysis reported in Sect. 4.2 has regarded the requirement document itself, the other two tasks 
were conducted considering both the requirements document and the models derived from them. Hence the 
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consolidation of requirements has been complemented by a parallel refinement of the moving-block model, 
with the aim of cross-checking their correspondence. The parallel refinement of both artifacts has proceeded 
following two main lines:  
 

- Careful review of the model presented in D2.1 
- Comparison with Hazard Analysis results. 

 
The main issues revealed by the review of the model presented in D2.1 were related to the: 
 

- Possibility of autonomous generation by OBU of an MA_req, possibility not initially considered in 
D2.1, for compatibility with ERTMS L2. After discussion, it was decided not to include this feature for 
the sake of simplicity;   

- Separation of concerns between OBU/LU and RBC; 
- More details of timing of communications. 

 
The comparison with the Hazard Analysis (Deliverable D2.2, Annex A) has shown that most of the 
requirements introduced for hazard mitigation were taken into account in the final moving-block 
requirements, except for the following entries: 
 
Entry OBU-LU-6  
 
Description: «LU is unable to send position information to the OBU, and OBU doesn't generate an alarm»  
Requirement: «Communication between LU and OBU must be safe and continuously supervised, if the 
connection is lost an alarm must be triggered.»  
 
The D2.1 model did not directly enforce this requirement, and a correction has been introduced at this 
regard. 
       
Entries OBU-TI-1, OBU- TI-2,  OBU- TI-3,  OBU- TI-4,  RBC- TI-1, RBC- TI-2 
 
These hazards pose requirements over the safe communication between OBU and the Train Integrity 
Monitor (TIM), and between the RBC and OBU regarding Train Integrity information.    
   
     
However, neglecting the aspects of Train Integrity is consistent with the developed model, which is focused 
on the moving-block and the localization aspects related to GNSS. The aspects of communication with the 
TIM module could also be considered (in the same way as those with the LU are considered), but it is 
important to underline that the safety aspects connected to Train Integrity have not been examined in 
ASTRail. 
 

5.4 Final Requirements 

The final Requirements Document for the moving block system resulting from the iteration described in this 
section is reported in Appendix A. 

The main differences with respect to the requirements expressed in D2.1 can be summarized as: 

1) The Position Report is sent every 5 seconds; 
2) The Position Report is sent only if the position information is more recent than 1 seconds; 
3) OBU replies with an ACK message to any received MA; 
4) If the ACK message is not received by RBC, RBC repeats three times the sending, each sending 

after X seconds the previous one; 
5) FATAL ERROR is declared if a OBU or RBC cycle takes more than 500 ms. 
6) Train BRAKE is commanded when MA is expired (even if the same MA continues to arrive) 
7) Initial train movement does not start until an initial MA is received.  
8) It is made explicit that OBU and RBC cycles may be not synchronous, even if they have the same 

period. 
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Position Report requirements, 1) and 2), concern real-time needs for the integrity of the train position 
information. 

Requirements 3) and 4) have been introduced to complete the communication from OBU and RBC with 
vitality and feedback messages, focused on closing the ring for the exchanged messages. 

Strict real-time processing requirements are introduced with 5), meaning that we have to manage full 
deterministic elaboration processes for OBU and RBC. A fail-safe defence programming technique is 
detailed with addiction of 6). Observation 7) is introduced to clarify initial conditions, and 8) is used to clarify 
that no synchronisation exist among the considered components. 

The final requirements reported in Appendix A have been also modelled in UML, using the UMC tool. 
Interpretations and simplifications were applied when considered appropriate. The model, together with its 
graphical UML representation, is available in the folder “UML-WP4-revised-model” at https://goo.gl/rcdVm2.   

6 Conclusion 

This deliverable reports the results of the preliminary trial on formal/semi-formal methods and tools, on the 
basis of the moving-block system described in Deliverable D2.1. The objective of this deliverable is twofold: 
firstly, we aim to model the initial design of the moving-block system with different formal/semi-formal tools, 
to evaluate their usability and their specific peculiarities; secondly, we want to refine and consolidate the 
initial requirements of the moving-block system to provide a stable version of such requirements.  

To address the first objective, we select a set of formal methods and tools, which will be subject to the trial, 
based on the results of the analysis of the state-of-the-art and state-of-the-practice presented in Deliverable 
D4.1. Eight tools in total are selected, namely Simulink, SCADE, UPPAAL, NuSMV, SPIN, ProB, Atelier B, 
UMC. Each tool is used to develop a model of the moving-block system. The models are showcased to 9 
industrial railway experts, and the widely adopted system usability scale (SUS) questionnaire is used to 
assess the usability of the tools. The results show that commercial tools with powerful user interface, such as 
Simulink and SCADE, are considered to be the most usable by the railway experts.  

However, besides usability, other factors need to be taken into account when selecting a tool, and each tool 
is appropriate for a specific context: 

● Simulink and SCADE are appropriate for both early prototyping and detailed design towards code 
generation, other tools need to be used when aiming at formal verification.  

● UMC is appropriate for initial prototyping, when one wants to adopt a design based on UML state 
machines to facilitate communication with different stakeholders, but wants also verification 
capabilities as the ones provided by UMC.  

● UPPAAL is appropriate when one needs to focus on the verification quantitative, real-time properties 
and probabilistic aspects. 

● NuSMV and SPIN are appropriate when the system, or composition of systems, has a large state 
space, and one needs to verify temporal logic properties.  

● Atelier B and ProB are the right choice for top-down development (i.e., from initial design to code) of 
single systems, and have somewhat complementary verification capabilities, with Atelier B 
supporting invariants checking, and ProB supporting model checking. 
 

To address the second goal, which is refining and consolidating the initial moving-block requirements, we 
rely on an automated quality analysis based on natural language processing (NLP) technologies, and on 
iterations of brainstorming among industrial and academic partners. We present the final requirements in 
Appendix A.  

https://goo.gl/rcdVm2
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1 Functional Requirements Specification (FRS) for the Moving-block System 

1.1 Acronyms 

OBU On Board Unit 
RBC Radio Block Center 
LU Location Unit 
MA Movement Authority 
PR Position Report 
MA_Req Movement Authority Request 
IP Information Point 
ACK Acknowledge 
LRBG Last Relevant Balise Group (IP) 
BC Braking Curve 
LR Location Request 
 

1.2 Architectural notes 

The system shall be composed of three components: 

• On-board Unit (OBU) 
• Location Unit (LU) 
• Radio Block Center (RBC) 

The OBU and LU components communicate through a bi-directional channel. 

The OBU and RBC components communicate through a bi-directional channel. 

Each component is structured into phases. Each phase is independent from the others, and each 
phase does not suspend itself based on the status of the following one. Each phase produces 
information to be used by the following phase. The information is stored in a buffer of SIZE 1, for 
each phase. The buffer can be overwritten by the phase that writes on the buffer. 

Maximum roundtrip delay for a communication between OBU and RBC (sending a request and 
receiving a reply) is 1.8 s.1 

A position report (PR) is sent by OBU every 5 s. The OBU has a connection timeout with RBC 
equal to 10 s (7 s in Italy). 

The Movement Authority (MA) always refers to the distance that the train is allowed to run, starting 
from the Last Relevant Balise Group (LRBG). 

Upon receiving a new MA, a new Braking Curve (BC) is computed. 

Before entering the braking phase, the train can ask RBC for a new Movement Authority (MA_Req) 
that potentially extends the target point forward (and skipping the use of brakes).2 

 

                                                 
1 Experimental data from HSL in Italy 
2 For simplicity, we do not consider the case of MA_Req 
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1.2.1 Location Unit 

The Location Unit receives location request (LR) from the OBU and replies with messages 
containing the location of the train. The calculation of the current position of the train is a critical 
task: a fatal error must be raised in case of fault. 

1.2.2 OBU 

The On Board Unit periodically requires position data to the LU (LR) and forward it to the RBC 
every 5 s. The OBU receives the MA from the RBC and computes the braking curve (BC), based 
on distance indicated in the MA and on current train position. 

The OBU internal cycle is about 500 ms: 

1. Compute position 
2. Send PR every 5 s 
3. RBC connection timeout check (10 s): 

o TO expired:  start braking, go to 6; 
o TO not expired:  continue to next step; 

4. If a new MA has been received: 
o Reset RBC connection timeout; 
o Send ACK to RBC 
o Compute new BC; 

5. BC control vs MA extension: 
o MA not ended:  repeat from 1;  
o MA ended:  start braking, go to 6; 

6. Brake 

 

1.2.3 RBC 

The RBC reacts to reception of PR or MA_Req messages by calculating the route and generating 
the MA.  

The RBC internal cycle is about 500 ms:  

1. Wait for PR from OBU 
2. Route calculation (clearance check)  
3. MA send (if the MA is equal to the last one, it could not be sent) 
4. If sent, wait for MA ACK (timeout 1 s): 

o TO expired < 3:  pause ‘x’ s, repeat from 3; 
5. Repeat from 1 
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1.3 Functional Requirements 

Safety 
SFT_01 The communication protocol between RBC and OBU must guarantee peer 

authentication, message integrity and message sequencing. 

SFT_02 OBU braking curve calculation and train emergency brake must be performed 
with stated precision and time margins, able to guarantee the safety of the 
train. 

SFT_03 RBC must calculate the MA with a predetermined precision, able to guarantee 
the safety of the train. 

SFT_04 RBC must calculate the MA within a single machine cycle. 

SFT_05 The computation of the current train position must be performed with high 
Safety Integrity Level (SIL4). 

SFT_06 LU must compute the train position within a single machine cycle. 

SFT_07 If the LU is not able to provide the current position, a fatal error must be 
raised. 

SFT_08 If OBU cannot complete the processing of all the messages received in one 
cycle, it shall rise a fatal error and stop the train. 

SFT_09 If RBC cannot complete the processing of all the messages received in one 
cycle, it shall rise a fatal error and shutdown. 

General 
GEN_01 No pre-emption of any cycle is allowed for LU, OBU and RBC. Before 

processing new messages or events, the computation cycle shall always be 
concluded. 

GEN_02 OBU cycle and RBC cycle shall refer to a common time base; however, this 
does not imply that these cycles are synchronized. 

GEN_03 In case of multiple messages of the same type from the same sender, the 
least recent one shall be deleted. 

GEN_04 The MA always refers to the distance that the train is allowed to run, starting 
from the last IP. 

GEN_05 When a train initiates its trip for the first time, the OBU shall require a MA to 
the RBC. 

GEN_06 RBC and OBU send just one message per cycle. 

Location Unit 
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CL_01 When the LU receives a LR, LU shall compute the location without additional 
delay. 

SL_01 After computing the location, the LU shall send the location to OBU. 

On Board Unit 
GR_01 Every 500 ms OBU shall send a LR to LU. 

SR_01 The OBU sends the LR to the LU (anytime a PR is required, see GR_01) 
without additional delay. 

SLRBC_01 OBU shall send a PR to RBC every 5 s (regardless of passing over a balise).3 

SLRBC_02 Any PR must contain a position not older than 1 s (older positions must be 
dropped),4 based on internal clock. 

SLRBC_03 PR must contain timestamps, based on internal clock. 

RMA_01 When a MA is received, the connection timeout is reset. 

RMA_02 If OBU does not receive a new MA within 10 s from the reception of the last 
MA, the OBU shall stop the train. 

RMA_03 Upon receiving a new MA, a new BC is computed by OBU. 

SARBC_01 Upon receiving a new MA, an ACK message must be sent to RBC. 

Radio Block Center 
CMA_01 When RBC receives the PR, RBC shall check the reported position with 

respect to current train MA. 

CMA_02 RBC sends the MA only as a reply to a PR. 

CMA_03 RBC shall process in parallel messages coming from all the trains under its 
control. 

CMA_04 Only the PR with the most recent timestamp must be processed. 

SMA_01 After computing the MA, RBC shall send the MA to the OBU. 

                                                 
3 We do not consider Virtual Balise as a trigger for sending PRs. This is more related to the RBC policy for 
generating the MAs. 
4 These are quite different respect to the Table 8 of D2.1 - UML State Machine for Moving Block - where PR 
are continuously generated and sent to the RBC. 
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SMA_02 If no ACK is received from RBC within 1 s, the MA is sent again, up to 3 times 
at regular intervals of ‘x’ s. 

2 Recall from D2.1 

Moving Block has been modelled using UML State Machine Diagrams described in Methodology. It 
has been considered that moving block is constituted by several regions, each of them models a 
function or process performed in the system. Functions can be classified in two groups depending 
on the nature of the process. Some function aim sharing data and information between units, 
however some other functions process the data and lead to some calculations.  

In Table 1 the regions identified are listed and the pseudo states that can be found in each region 
as well as a brief description of the modelled function within the region. Subsequently in Table 2 
can be found the respective diagrams for each function and region as well as the events that 
trigger these function and transitions from one pseudo state to the next one. 

ID Region Pseudostate Description 

OBU 1 Generation of location 
request 

Requiring 
location 

Every fixed interval of time the On-board Unit generates 
a request of its location. 

TCOM 2 OBU sends location 
request to Location Unit 

Empty The On-board Unit sends the location request to the 
Location Unit. Full 

LU 3 
Processing location 

request and calculating 
location by Location Unit 

Idle 
Once the Location Unit has received the location 

request, it processes it and calculates the location. 
Busy 

TCOM 4 
Sending location from 
Location Unit to on-

board Unit 

Empty 
The Location Unit sends location to On-board Unit. 

Full 

RCOM 5 Sending location from 
on-board unit to RBC 

Empty Once the On-board Unit receives its location it sends it 
to RCB. Full 

RBC 6 

Processing information 
and calculation of 

movement authorities by 
RBC 

Idle Once the RCB receives the location of the trains it 
processes the information and calculates Movement 

Authorities. Busy 

RCOM 7 Sending movement 
authority to train 

Empty 
RBC sends Movement Authorities to On-board Units. 

Busy 

CON 8 Controlling 
Counting On board Unit controls the reliability of the MA and 

activates the emergency stop when the MA available 
becomes too old. Stopped 

Table 1 - Summary of regions and pseudostates modelled 
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Table 2 - UML State Machine Diagrams for Moving Block 
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Within the processes described in the Table 7 the MA is extended automatically to the train, it shall 
be noted that when the train initiates its trip for the first time On-board Unit shall request the MA to 
the RBC. Nevertheless, the objective is to run in FS whenever possible, and the system must be 
designed to achieve this at the earliest opportunity. The train will automatically receive new 
ERTMS MAs as required, as long as it is safe to provide them. 

 

 


